




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1正弦定理教学目的:使学生掌握正弦定理 能应用解斜三角形,解决实际问题教学重点:正弦定理教学难点:正弦定理的正确理解和熟练运用教学过程:设置情境 引出正弦定理师:已知为直角三角形,你能得到哪些边角关系?生1:在以为斜边的直角三角形中,有,生2:还有师:好!那么这个优美的关系式对等边三角形成立吗?对一般三角形还成立吗?这节课我们就来研究这一问题正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即=2R(R为ABC外接圆半径)1直角三角形中:sinA=,sinB=, sinC=1 即c=, c=, c=2斜三角形中证明一:(外接圆法)如图所示,同理 =2R,2R证明二:(向量法)过A作单位向量垂直于 由+=两边同乘以单位向量得(+)=则+=|cos90+|cos(90-C)=| |cos(90-A)=同理,若过C作垂直于得:=正弦定理的应用 从理论上正弦定理可解决两类问题: 1两角和任意一边,求其它两边和一角;2两边和其中一边对角,求另一边的对角,进而可求其它的边和角讲解范例:例1:某地出土一块类似三角形刀状的古代玉佩,其一角已破损,现测得如下数据:,。为了复原,请计算原玉佩两边的长(结果精确到)分析:将分别延长相交于一点,在中,已知的长度和角与,可以通过正弦定理求的长解:将分别延长交于一点,在中,因为,所以,答:原玉佩两边的长分别约为例2:台风中心位于某市正东方向300处,正以的速度向西北方向移动,距离台风中心范围内将会受其影响。如果台风风速不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到)?分析:台风沿着运动时,由于,所以开始台风影响不了城市,由点到台风移动路径的最小距离所以台风在运动过程中肯定要影响城市,这就要在上求影响的始点和终点,然后根据台风的速度计算台风从到持续的时间解:设台风中心从点向西北方向沿射线移动,该市位于点的正西方向处的点,假设经过,台风中心到达点,则在中,由正弦定理得知利用计算器得角当时,所以,同理:当时,答:约后将要遭受台风影响,持续约思考:通过这个问题的解决我们发现,如果已知两边和其中一边的对角,解三角形时会出现两解的情况,还会出现其他情况吗?为什么有两个解?你还能用其他方法解决这个问题吗?已知a, b和A, 用正弦定理求B时的各种情况:若A为锐角时:若A为直角或钝角时: 无解 一解课堂小结:(1)正弦定理:(2)正弦定理的证明(3)正弦定理的应用范围已知三角形的两角和任一边,求三角形的其他边和角已知三角形的两边和其中一边的对角,求三角形的其他边和角(4)解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术装置制作合同范本
- 煤矿设备采购合同范本
- 店面出租长期合同范本
- 只做设计合同范本
- 私房居住出租合同范本
- 内墙涂料的合同范本
- 餐馆股份合同范本简单
- 租房天花改造合同范本
- 坏疽性脓皮病清创护理查房
- 土地流转与生态平衡合同
- 绩效薪酬管理办法模板
- ZLP630高处作业吊篮使用说明书
- 2025至2030中国电容膜片真空计行业发展趋势分析与未来投资战略咨询研究报告
- 药品研发项目管理制度
- 社工儿童沟通技巧课件
- 建设项目环境影响变更说明报告
- 新疆和田县多宝山铅多金属矿项目环境影响报告书
- 2025二年级语文下册期末统考测试卷汇-总
- 血管活性药物静脉输注护理
- 苯乙酮项目可行性研究报告
- 卫星遥感技术在军事目标识别中的应用-洞察阐释
评论
0/150
提交评论