英语翻译封面.doc

氧化铜矿的分选试验研究

收藏

压缩包内文档预览:
预览图
编号:33053015    类型:共享资源    大小:2.54MB    格式:ZIP    上传时间:2019-12-20 上传人:遗**** IP属地:湖北
25
积分
关 键 词:
氧化 铜矿 分选 试验 研究
资源描述:
氧化铜矿的分选试验研究,氧化,铜矿,分选,试验,研究
内容简介:
毕业设计(论文)题 目 氧化铜矿的分选试验研究 学院名称 核资源工程学院 指导教师 梁建龙 职 称 副教授 班 级 矿加091 学 号 20094720124 学生姓名 暨静 2013年 6 月 2 日南 华 大 学毕 业 设 计(论文) 任 务 书学 院: 核资源工程学院 题 目: 氧化铜矿的分选试验研究 起 止 时 间: 2012.12.212012.6.1 学 生 姓 名: 暨 静 专 业 班 级: 矿物加工091班 指 导 教 师: 梁建龙 系 主 任: 王 清 良 院 长: 谭 凯 旋 2012年12月22日设计(论文)内容及要求一、 设计内容:该氧化铜矿来自衡阳耒阳县矿石,拟定一浮选方案,。(1)矿石准备条件和确定矿石粒度。(2)浮选药剂的选择(3)试验仪器设备及所需化学试剂及分析测试有关元素。(4)浮选条件试验(5)结论二、 设计要求:运用所学的基础理论与专业知识(包括之前所完成的认知实习、生产实习和毕业实习的所获得的相关知识),在老师指导下,独立地、较系统地完成“钒矿条件的试验”,巩固所学的各科知识,提高运用所学理论知识和专业技能的能力;学会分析解决高含泥难处理砂岩铀矿浸出工艺过程中的实际问题,熟悉并掌握氧化铜工艺有关的原料与产品分析,要求掌握word文档的制作、Excel的应用和CAD制图,掌握增强独立思考问题的能力,为今后走上工作岗位奠定良好的基础。具体要求如下:(1)按照毕业论文任务书的要求,在指导老师的指导和帮助下,结合实际情况,按期、认真完成“氧化铜矿的分选试验研究”毕业论文的研究内容,按时提交毕业论文。(2)翻译与本专业有关的英文文献一篇(3000-5000汉字)。(3)设计(论文)所需查阅的资料1)资源加工学,20042)矿物资源加工技术与设备,20063)选矿学,20104)岩石矿物分析,19945)有色冶金分析手册,20046)试验研究方法,2011 7)浮选药剂的化学原理,19968)图书馆、期刊网检索相关资料。(4)毕业论文(设计)进度安排阶段阶 段 内 容起 止 时 间1广泛查阅相关文献资料并进行分析、整理,编写开题报告。20.182根据所掌握资料,结合现场实际情况,认真研究、分析,制定试验方案。2013.2.82013.3.083准备试验条件,矿石粒度试验2013.3.92013.3.314浮选剂选择条件试验及相关元素化验2013.4.12013.5.105优化试验。补充完善,编写论文。2013.5.112013.5.216预答辩,论文修改、审核。2013.5.222013.5.317答辩。2013.6.12013.6.2指导教师:梁建龙 2012年 12月 20日第 3 页 共 3 页南华大学本科生毕业设计(论文)开题报告设计(论文)题目氧化铜矿的分选试验研究设计(论文)题目来源指导老师的科研项目设计(论文)题目类型论文论文起止时间20012.12.21-2013.6.2一、设计(论文)依据及研究意义:氧化铜矿物种类繁多,常见的具有工业回收价值的氧化铜矿物主要有:孔雀石CuCO3Cu(OH)2、硅孔雀石CuSiO32H2O、蓝铜矿2CuCO3Cu(OH)2、赤铜矿(Cu2O)、水胆矾CuCl23Cu(OH)2、胆矾(CuSO45H2O)、铜氯矾(FeCu)SO47H2O等。20世纪来,人们就各种不同类型的氧化铜矿作了大量的研究,在理论和实践上取得了很大成果。概括起来大体分两大类:一是浮选法,用来处理易选铜矿石,如孔雀石.二是化学方法,用来处理难选铜矿石,如硅孔雀石、假孔雀石等。化学方法是处理难选氧化铜矿的主要方法,并能取得较好技术指标,但也存在一些问题,如酸浸出法不适合含碱土金属的碳酸盐、MgO和Mg(OH)2、硅酸盐和粘土;氨浸法易出现固液分离困难。另外化学方法处理周期长,回收速度慢。所以目前浮选法仍是优先考虑处理氧化铜矿的主要方法。氧化铜矿结构松散、亲水性较强、浮选速度慢、含泥量大、含铜矿物种类多、铜矿物可浮性差异较大、脉石组成极为复杂(常含硅质、钙质及铁质脉石),使其浮选工艺较硫化矿复杂,不仅药剂种类多、用量大,而且浮选指标一般较低。我国多年来的浮选生产实践和科学试验证明,对于氧化铜矿的浮选来说,除浮选药剂起着举足轻重的作用外,浮选条件以及矿石粒度等都对浮选效果有重要的影响。二、设计(论文)主要研究的内容、预期目标:(技术方案、路线)研究内容:1. 原矿物理化学性质(化学元素组成,物相分析)的研究。2. 最佳磨矿粒度的试验研究。3. 捕收剂(丁基黄药,戊基黄药,丁铵黑药,羟肟酸,螯合捕收剂COBA,CF捕收剂、680混合黄药等)对浮选的效果的试验研究。4. 活化剂(Na2S,硫酸铵,氧化铜螯合活化剂D2、D3,活化剂DZ-602等)对浮选效果的试验研究。通过以上不同条件的研究以及条件试验确定最佳的工艺试验流程。 预期目标(路线):首先,了解本论题的研究状况,形成开题报告。其次,进一步搜集阅读资料并研读文本,做好相关的记录,形成论题提纲。第三,深入实验研究,写成初稿。最后,反复修改,完成定稿。三、设计(论文)的研究重点及难点:1. 对氧化铜矿捕收剂的选择及其用量的探究。2. 对氧化铜矿活化剂的选择及其用量的探究。3. 矿泥的影响。四、设计(论文)研究方法及步骤(进度安排):阶段阶 段 内 容起 止 时 间1广泛查阅相关文献资料并进行分析、整理,编写开题报告。2012.12.212013.1.182根据所掌握资料,结合现场实际情况,认真研究、分析,制定试验方案。2013.2.82013.3.083准备试验条件,矿石粒度试验2013.3.92013.3.314浮选剂选择条件试验及相关元素化验2013.4.12013.5.105优化试验。补充完善,编写论文。2013.5.112013.5.216预答辩,论文修改、审核。2013.5.222013.5.317答辩。2013.6.12013.6.2五、进行设计(论文)所需条件:1. 对氧化铜矿的浮选工艺有一个全面的掌握。2. 要求能熟练的应用word、origin等软件。3. 必要的参考资料以及文献资料。4. 实验室提供的必要的药剂和设备条件六、指导教师意见签名: 年 月 日谢辞从一月份开题到现在的落稿,历经半载。回顾这半年的汗水与今日的收获,感慨万千,这其中更少不了老师和同学的帮助。在此次的论文编写中,梁建龙老师是我的指导老师。梁老师非常的负责,他每个礼拜星期一都会检查我上周的工作,然后做出评论与指导。虽然有时候觉得梁老师比较严格,但正是这种严格督促着我要把这件事情做好。梁老师对工作的认真负责与对学生的关怀,给我的生活与学习好的启示:在生活中要关心同伴,在学习中要有一种孜孜不倦的求学精神,对待科学更要有一种严谨的精神。当然,在这里也得感谢帮助我的同学们。大学几年都没有独立的做过一个完整的试验,甚至有些新机器都不会使用,有些旧机器坏了也不会修。幸好实验室里还有班上其他几位同学,感谢他们教我操作,帮我修理一些小物件。在这个实验室里,我再次的感受到了同学间友情的可贵以及同伴间合作的重要性。在这里还要感谢教研室其他老师以及实验室的老师对我学术上的指导与帮助。亲爱的老师们,同学们!正是有你们的帮助,我的试验与论文才得以成功的完成。在这个过程中不仅使我获得了学习上的收获,对我的生活和以后的工作都有帮助。真心的感谢你们,谢谢!Received 20 May 2008; accepted 29 August 2008 Projects 50604016 supported by the National Natural Science Foundation of China and 2007BAB22B01 by the 11th Five-Year Plan of National Science and Technology of China Corresponding author. Tel: +86-731-8836309; E-mail address: Techniques of copper recovery from Mexican copper oxide ore CAO Zhan-fang, ZHONG Hong, LIU Guang-yi, ZHAO Shu-juan Institute of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China Abstract: Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the tailings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 C with a mixing speed of 500 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/mS) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning. Keywords: copper oxide ore; flotation; stirring leaching; extraction 1 Introduction Progress in science and technology and the development of the economy has increased the demand for copper products at home and abroad. Meanwhile the number of new discoveries, and the easily exploited ore, are gradually decreasing. Moreover, a rising awareness of environmental protection has lead to more and more difficulty with the smelting process17. Copper ore is mainly copper sulfide or copper- oxide ore. Flotation methods were applied to copper sulfide ore to recover a refined copper ore. Copper can be obtained after the smelting process. Flotation is now one of the main methods for dealing with copper-oxide ore. In addition, hydro-metallurgy has also been widely adopted. Since the 1960s, the simple process flow, low cost and low pollution of the agitation-leaching-solvent extraction-electro-winning process has caused it to be widely adopted. This technology now produces around 20% of the total copper worldwide813. 2 Experimental The ore used in this experiment was from Mexico. It is a mixed ore mainly containing copper-oxide that also contains some copper sulfide ore that undergoes good flotation. The acid leaching rate of copper sulfide ore is lower than that of copper oxide ore. Acid leaching can easily release harmful hydrogen sulfide gas14. The process flow used in this experiment was: flotation-agitation leaching-solvent extraction-electro-winning. 3 Results and discussion 3.1 Analysis of the raw ore Emission spectrometry, chemical analysis and X-ray diffraction results showed that in the ore sample the percentage of copper was 1.19%. This consisted of copper-oxide at 0.84% and copper sulfide at 0.35%. The oxidation rate of this core sample is high. The X-ray diffraction spectrum shown in Fig. 1 indicates that the ore is a mixed one that is mainly composed of copper-oxide. The copper-oxide ore is ramsbeckite and malachite and the gangue is mainly SiO2. Part of the copper sulfide ore is chalcopyrite. Therefore, an acid leaching-extraction-electro- winning process is suitable for this ore. During acid leaching the harmful gas H2S will be released because of the existence of copper sulfide. Since the acid leaching efficiency of chalcopyrite is lower than that of copper oxide both direct acid leaching and flotation leaching will be studied in this experiment. Mining Science and Technology 19 (2009) 00450048 MININGSCIENCE AND TECHNOLOGY/locate/jcumt Mining Science and Technology Vol.19 No.1 46 Fig. 1 X-ray diffraction spectrum of the raw ore 3.2 Direct acid leaching of the raw ore The experimental conditions for direct acid leaching were: 20 g of raw ore, 1 h stirring at a temperature around 25 C, a mixing speed of 500 r/min, an H2SO4 concentration of 1.0 mol/L, a mass ratio of the ore-slurry liquid to the solid (mL/mS) of 3 and a pH value of the wash filtrate of 1.5. The filter residue was washed three times and then all filtrates were collected. The result is shown in Table 1. Table 1 Result of direct acid leaching on raw ore Product Lixivium Residue Raw ore Recovery rate (Cu) (%) 80.94 19.06 100.00 The results in Table 1 indicate that 80.94% leachate can be obtained by direct acid leaching of raw ore. A smelly gas released from the leaching process was probably H2S. The low leachate quantity and the release of much smelly gas caused leaching experiments on raw ore to be given up. 3.3 Techniques of flotation There were disadvantages to the technique of direct acid leaching so flotation-acid leaching was attempted. We report the study of the selected system. After activation by 160 g/t Na2S and flotation by butyl xanthate, the copper oxide ore had a copper concentration of 19.10% at a recovery rate of 35.02%. The results are shown in Fig. 2 and Table 2. Raw oreLime 1000, pH: 8.00.074mm 70%Na2S 160Butyl Xanthate 100Butyl Xanthate 2 4 3 2 3 3Preparation concentrateOre tailing2#oil 10 Fig. 2 Process flow of closed-circuit flotation The concentrate from flotation was examined after the extraction. Fig. 3 is the result from an X-ray scan of the flotation concentrate. It indicates the presence of chalcopyrite, ramsbeckite and malachite. A majority of the copper sulfide ore is chalcopyrite, which was mostly floated. Table 2 Results of closed-circuit flotation Product Productive rate (%) Purity (%) Percent recovery (%) Preparation concentrate 2.18 19.10 35.02 Ore tailing 97.82 0.79 64.98 Raw ore 100.00 1.189 100.00 Fig. 3 X-ray result of flotation preparation concentrate 3.4 Acid leaching of the flotation tails 1) Fig. 4 is the X-ray scan of the ore tailings after flotation. The copper content is 0.79% in the tailings but chalcopyrite is not present. These results indicate that most of the chalcopyrite was floated. There were two kinds of copper ore in the tailings, malachite and chalcopyrite, that are suitable for acid leaching. Fig. 4 X-ray results of tailings after flotation 2) Sulfuric acid was used as the leaching solution because of its high leaching capability and low price. The principal chemical reactions are: For Malachite: CuCO3Cu(OH)2+2H2SO4= 2CuSO4+CO2 For Chalcopyrite: Cu15(SO4)4(OH)226H2O+1H2SO4=15CuSO4+28H2O 3) Many factors influence leaching, including the lixivium concentration, the liquid-solid ratio, the leaching time, the leaching temperature and the washing times of the filter residue. Fig. 5 shows the relationship between individual factors and the leaching of the copper. CAO Zhan-fang et al Techniques of copper recovery from Mexican copper oxide ore 472.0606570758085Cu dissolution (%)1.224H SOC(mol/L)1.01.41.66570758085Cu dissolution (%)1.2Time (h)2.0 2.53.0 3.54.579.0Cu dissolution (%)4.0124555657585Cu dissolution (%)102030408183858789Cu dissolution (%)505.079.580.080.581.081.582.082.5430Liquid-to-solid ratioWashing timesTemperature (C)Grain size: 74 m 80%; leaching time: 1 h; liquid-solid ratio is 3; temperature: 25 C Grain size: 74 m 80%; H2SO4concentration : 1.0 mol/L; temperature: 25 C; liquid-solid ratio: 3Grain size: 74 m 80%; temperature: 25 C; leaching time: 1 h; total quality of H2SO4: 5.88 g Grain size: 74 m80%; leaching time: 1 h; liquid-solid ratio: 3; H2SO4concentration : 1 mol/L; temperature: 25 C(a) H2SO4 concentration (c) Liquid-to-solid ratio(d) Temperature (e) Washing time (b) TimeGrain size: 74 m80%; leaching time: 1 h; liquid-solid ratio: 3; H2SO4concentration : 1 mol/L Fig. 5 Relationship between individual factors and the leaching of the copper It can be concluded that increasing the H2SO4 concentration, extending the time of extraction, increasing the solid-liquid ratio and increasing the temperature will increase the amount of copper leached from the ore. Two washes of the filter residue are sufficient. Considering the economics, an optimal leaching condition would be: 1 h stirring at 25 C with a mixing speed of 500 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of ore-slurry-liquid to solid of 3. 3.5 Solvent extraction-electro-winning process The extraction and anti-extraction conditions are suffocated kerosene with an organic phase of 15% LIX984N, an extraction phase ratio of 1 and an anti-extraction phase ratio of 2. The processing parameters for electro deposition were a bath voltage of 2 V and a current density of 170 A/m2. The process flow is shown in Fig. 6. The copper content of the product was more than 99.9%. 99.9% CuRaffinate 0.1-0.3 g/L Cu1-3 g/L Cu1-3 g/L H2SO4First extractionSecond extractionLoading solution 2-4 g/L CuSecond back-extractionFirst back-extractionElectro deposited copper20 35 g/L Cu145 235 g/L H2SO4 Fig. 6 Process flow of solvent extraction-electro-winning 4 Conclusions 1) The results indicate that the technology of direct leaching gives a copper recovery of 81% using Mexico copper oxide ore. However, the harmful gas H2S was released during the process. 2) Copper ore containing 19.01% copper, at a recovery of 35.02%, was obtained by using sodium sulfide and butyl xanthate flotation. 3) The leaching of copper oxide from the ore tailings is over 83.33% under suitable conditions such as: 1 h stirring at 25 C, a mixing speed of 500 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of ore-slurry-liquid to solid (mL/mS) of 3. The overall yield from the refined ore after combined flotation and leaching is over 89.18% copper. This is much better than sole flotation or leaching. 4) Copper more than 99.9% pure was obtained from the flotation-agitation leaching-solvent extrac- tion-electro-winning process. It can be concluded that the joint technique of flotation and leaching is suitable for use on copper oxide mixed ore. Acknowledgements Authors would like to acknowledge the financial support provided by the 11th Five-Year Plan of National Science and Technology of China (No.2007BAB22B01) and the National Natural Science Foundation of China (No.50604016). References 1 Cheng Q, Zhang X L. Ammonia leaching of oxidized copper ore at normal temperature and pressure. Hydro- metallurgy of China, 2006, 25(2): 7477. (In Chinese) 2 Burniston T, Severs K J. Advances in copper solvent extraction by improved reagent technology. In: Proceedings of 1st International Conference on Hydro- metallurgy. Beijing: International Academic Publishers, 1988: 231235. Mining Science and Technology Vol.19 No.1 483 Wu H S, Liu Y. Study on copper recovery from tailings by means of leaching process. China Mining Magazine, 2001, 10(6): 6567. (In Chinese) 4 Zhang J, Wu A X, Wang Y M, Chen X S. Experimental research in leaching of copper-bearing tailings enhanced by ultrasonic treatment. Journal of China University of Mining & Technology, 2008, 18(1): 98102. (In Chinese) 5 Watling H R. The bioleaching of sulphide minerals with emphasis on cop
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:氧化铜矿的分选试验研究
链接地址:https://www.renrendoc.com/p-33053015.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!