Z007-卧式升降台铣床主传动系统设计主轴箱[P=4kw 最低转速35.5-1600 公比1.41]
收藏
资源目录
压缩包内文档预览:(预览前5页/共45页)
编号:33131677
类型:共享资源
大小:1.13MB
格式:ZIP
上传时间:2019-12-20
上传人:牛***
认证信息
个人认证
霍**(实名认证)
辽宁
IP属地:辽宁
49.8
积分
- 关 键 词:
-
P=4kw 最低转速35.5-1600 公比1.41
Z007-卧式升降台铣床主传动系统设计主轴箱[P=4kw
最低转速35.5-1600
公比1.41]
Z007
卧式
升降台
铣床
传动系统
设计
- 资源描述:
-
以上为资料预览概图,下载文件后为完整一套设计。【清晰,无水印,可编辑】dwg后缀为cad图,doc后缀为word格式,png和jpg,gif后缀为资料预览图片。有疑问可以咨询QQ:529358737
- 内容简介:
-
机械课程设计卧式升降台铣床主传动系统设计院 系:机械工程学院专 业:机械设计制造及其自动化专业班 级:学 号:姓 名:指导老师: 日 期: 目录第1章 机床用途、性能及结构简单说明6第2章 设计部分的基本技术特性和结构分析72.1铣床主参数和基本参数72.2 确定传动公比72.3拟定参数的步骤和方法72.3.1 极限切削速度Vmax、Vmin72.3.2 主轴的极限转速8第3章 运动设计93.1 主电机功率动力参数的确定93.2确定结构式93.3 确定结构网103.4 绘制转速图和传动系统图103.5 确定各变速组此论传动副齿数113.6 核算主轴转速误差12第4章 设计部分的动力计算134.1 带传动设计134.1.1计算设计功率Pd134.1.2选择带型144.1.3确定带轮的基准直径并验证带速144.1.4确定中心距离、带的基准长度并验算小轮包角154.1.5确定带的根数z164.1.6确定带轮的结构和尺寸164.1.7确定带的张紧装置164.1.8计算压轴力164.2 计算转速的计算184.3 齿轮模数计算及验算194.4 传动轴最小轴径的初定244.5 主轴合理跨距的计算254.6 轴承的选择264.7 键的规格264.8变速操纵机构的选择264.9主轴合理跨距的计算264.10 轴承寿命校核27第5章 主轴箱结构设计及说明295.1 结构设计的内容、技术要求和方案295.2 展开图及其布置30结束语31参考文献32 3第1章 机床用途、性能及结构简单说明机床技术参数有主参数和基本参数,他们是运动传动和结构设计的依据,影响到机床是否满足所需要的基本功能要求,参数拟定就是机床性能设计。主参数是直接反映机床的加工能力、决定和影响其他基本参数的依据,如铣床的最大加工直径,一般在设计题目中给定,基本参数是一些加工件尺寸、机床结构、运动和动力特性有关的参数,可归纳为尺寸参数、运动参数和动力参数。通用铣床工艺范围广,所加工的工件形状、尺寸和材料各不相同,有粗加工又有精加工;用硬质合金刀具又用高速钢刀具。因此,必须对所设计的机床工艺范围和使用情况做全面的调研和统计,依据某些典型工艺和加工对象,兼顾其他的可能工艺加工的要求,拟定机床技术参数,拟定参数时,要考虑机床发展趋势和同国内外同类机床的对比,使拟定的参数最大限度地适应各种不同的工艺要求和达到机床加工能力下经济合理。机床主传动系因机床的类型、性能、规格和尺寸等因素的不同,应满足的要求也不一样。设计机床主传动系时最基本的原则就是以最经济、合理的方式满足既定的要求。在设计时应结合具体机床进行具体分析,一般应满足的基本要求有:满足机床使用性能要求。首先应满足机床的运动特性,如机床主轴油足够的转速范围和转速级数;满足机床传递动力的要求。主电动机和传动机构能提供足够的功率和转矩,具有较高的传动效率;满足机床工作性能要求。主传动中所有零部件有足够的刚度、精度和抗震性,热变形特性稳定;满足产品的经济性要求。传动链尽可能简短,零件数目要少,以便节约材料,降低成本。45第2章 设计部分的基本技术特性和结构分析2.1铣床主参数和基本参数题目序号正转最低转速nmin( )正转最高转速nmin( )电机功率N(kw)公比435.5160041.412.2 确定传动公比根据任务书提供的条件,可知传动公比=1.41。根据机械制造装备设计由公式: 则有: Z=+1 转速范围=45.07由上述综合可得 由此可知机床主轴共有12级。因为=1.41=1.06,根据机械制造装备设计查表标准数列。首先找到最小极限转速31.5,再每跳过5个数(1.261.06)取一个转速,即可得到公比为1.41的数列:35.5、50、71、100、140、200、280、400、560、800、1120、1600 r/min。2.3拟定参数的步骤和方法2.3.1 极限切削速度Vmax、Vmin根据典型的和可能的工艺选取极限切削速度要考虑:允许的切速极限参考值如下:表 2.1加 工 条 件 Vmax(m/min)Vmin(m/min)硬质合金刀具粗加工铸铁工件 3050硬质合金刀具半精或精加工碳钢工件150300螺纹加工和铰孔382.3.2 主轴的极限转速计算铣床主轴极限转速时的加工直径,则主轴极限转速应为结合题目条件,取标准数列数值,取考虑到设计的结构复杂程度要适中,故采用常规的扩大传动。各级转速数列可直接从标准的数列表中查出,按标准转速数列为:35.5、50、71、100、140、200、280、400、560、800、1120、1600 r/min。第3章 运动设计3.1 主电机功率动力参数的确定合理地确定电机功率N,使机床既能充分发挥其性能,满足生产需要,又不致使电机经常轻载而降低功率因素。根据题设条件电机功率为4KW可选取电机为:Y112M-4额定功率为4KW,满载转速为1440r/min.3.2确定结构式可以按照Z=12进行分配已知Z=x3ba,b为正整数,即Z应可以分解为2和3的因子,以便用2、3联滑移齿轮实现变速。确定变速组传动副数目实现12级主轴转速变化的传动系统可以写成多种传动副组合:a)12=3 b)12=43 c)12=3 d)12=212=2在上述的方案中1和2有时可以省掉一根轴。缺点是有一个传动组内有四个传动副。如果用一个四联滑移齿轮的话则会增加轴向尺寸;如果用两个滑移双联齿轮,则操纵机构必须互梭以防止两个滑移齿轮同时啮合。所以一般少用。3,4,5方案可根据下面原则比较:从电动机到主轴,一般为降速传动。接近电动机处的零件,转速较高从而转矩较小,尺寸也较小。如使传动副较多的传动组放在接近电动机处,则可使小尺寸的零件多些,大尺寸的零件就可少些,就省材料了。这就是“前多后少”的原则。从这个角度考虑,以取12=3的方案为好。在12=2中,又因基本组和扩大组排列顺序的不同而有不同的方案。可能的六种方案,其结构网和结构式见下面的图。在这些方案中可根据下列原则选择最佳方案。1)传动副的极限传动比和传动组的极限变速范围 在降速传动时,为防止被动齿轮的直径过大而使径向尺寸太大,常限制最小传动比1/4。在升速时,为防止产生过大的震动和噪声,常限制最大传动比。因此主传动链任一传动组的最大变速范围一般为。方案a b c d是可行的。方案d f是不可行的。同时,最后传动组与最后扩大组往往是一致的,安装在主轴与主轴前一传动轴的具有极限或接近极限传动比的齿轮副承受最大扭矩,在结构设计上可以获得较为满意的处理。这也就是最后传动组的传动副经常为2的另一原因。设计铣床主变速传动系时,为避免从动齿轮尺寸过大而增加箱体的径向尺寸,在降速变速中,一般限制限制最小变速比 ;为避免扩大传动误差,减少震动噪声,在升速时一般限制最大转速比。斜齿圆柱齿轮传动较平稳,可取。因此在主变速链任一变速组的最大变速范围。在设计时必须保证中间变速轴的变速范围最小。综合上述可得:主传动部件的运动参数 ,=35.5,Z=12,=1.413.3 确定结构网根据“前多后少” , “先降后升” , 前密后疏,结构紧凑的原则易知第二扩大组的变速范围r=(P3-1)x=1.414=3.958 满足要求 图3.1 结构网图 3.4 绘制转速图和传动系统图(1)选择电动机:采用Y系列封闭自扇冷式鼠笼型三相异步电动机。(2)绘制转速图: 图3.2 转速图(3)画主传动系统图。根据系统转速图及已知的技术参数,画主传动系统图如图3.3:1-2轴最小中心距:A1_2min1/2(Zmaxm+2m+D)轴最小齿数和:Szmin(Zmax+2+D/m)3.5 确定各变速组此论传动副齿数(1)Sz100-124,中型机床Sz=70-100(2)直齿圆柱齿轮Zmin18-24,m4 图3.3 主传动系统图(7) 齿轮齿数的确定。变速组内取模数相等,据设计要求Zmin1824,齿数和Sz100124,由表4.1,根据各变速组公比,可得各传动比和齿轮齿数,各齿轮齿数如表(8) 3.1。 表3.1 齿轮齿数传动比基本组第一扩大组第二扩大组1:11:21:1.411:11:2.82:11:2代号ZZZZZZZZZ5Z5ZZZ7Z7齿数3030 204025354242 2262603018723.6 核算主轴转速误差实际传动比所造成的主轴转速误差,一般不应超过10(-1),即10(-1)=4.1第4章 设计部分的动力计算4.1 带传动设计输出功率P=4kW,转速n1=1440r/min,n2=800r/min4.1.1计算设计功率Pd表4.1 工作情况系数工作机原动机类类一天工作时间/h10161016载荷平稳液体搅拌机;离心式水泵;通风机和鼓风机();离心式压缩机;轻型运输机1.01.11.21.11.21.3载荷变动小带式运输机(运送砂石、谷物),通风机();发电机;旋转式水泵;金属切削机床;剪床;压力机;印刷机;振动筛1.11.21.31.21.31.4载荷变动较大螺旋式运输机;斗式上料机;往复式水泵和压缩机;锻锤;磨粉机;锯木机和木工机械;纺织机械1.21.31.41.41.51.6载荷变动很大破碎机(旋转式、颚式等);球磨机;棒磨机;起重机;挖掘机;橡胶辊压机1.31.41.51.51.61.8根据V带的载荷平稳,两班工作制(16小时),查机械设计P296表4,取KA1.1。即4.1.2选择带型普通V带的带型根据传动的设计功率Pd和小带轮的转速n1按机械设计P297图1311选取。图4.1 带轮转速图根据算出的Pd4.4kW及小带轮转速n11440r/min ,查图得:dd=80100可知应选取A型V带。4.1.3确定带轮的基准直径并验证带速由机械设计P298表137查得,小带轮基准直径为80100mm则取dd1=100mm ddmin.=75 mm(dd1根据P295表13-4查得)表4.2 V带带轮最小基准直径槽型YZABCDE205075125200355500由机械设计P295表13-4查“V带轮的基准直径”,得=150mm 误差验算传动比: (为弹性滑动率)误差 符合要求 带速 满足5m/sv300mm,所以宜选用E型轮辐式带轮。总之,小带轮选H型孔板式结构,大带轮选择E型轮辐式结构。带轮的材料:选用灰铸铁,HT200。4.1.7确定带的张紧装置 选用结构简单,调整方便的定期调整中心距的张紧装置。4.1.8计算压轴力 由机械设计P303表1312查得,A型带的初拉力F0117.83N,上面已得到=172.63o,z=3,则对带轮的主要要求是质量小且分布均匀、工艺性好、与带接触的工作表面加工精度要高,以减少带的磨损。转速高时要进行动平衡,对于铸造和焊接带轮的内应力要小, 带轮由轮缘、腹板(轮辐)和轮毂三部分组成。带轮的外圈环形部分称为轮缘,轮缘是带轮的工作部分,用以安装传动带,制有梯形轮槽。由于普通V带两侧面间的夹角是40,为了适应V带在带轮上弯曲时截面变形而使楔角减小,故规定普通V带轮槽角 为32、34、36、38(按带的型号及带轮直径确定),轮槽尺寸见表7-3。装在轴上的筒形部分称为轮毂,是带轮与轴的联接部分。中间部分称为轮幅(腹板),用来联接轮缘与轮毂成一整体。表4.5 普通V带轮的轮槽尺寸(摘自GB/T13575.1-92) 项目 符号 槽型 Y Z A B C D E 基准宽度 b p 5.3 8.5 11.0 14.0 19.0 27.0 32.0 基准线上槽深 h amin 1.6 2.0 2.75 3.5 4.8 8.1 9.6 基准线下槽深 h fmin 4.7 7.0 8.7 10.8 14.3 19.9 23.4 槽间距 e 8 0.3 12 0.3 15 0.3 19 0.4 25.5 0.5 37 0.6 44.5 0.7 第一槽对称面至端面的距离 f min 6 7 9 11.5 16 23 28 最小轮缘厚 5 5.5 6 7.5 10 12 15 带轮宽 B B =( z -1) e + 2 f z 轮槽数 外径 d a 轮 槽 角 32 对应的基准直径 d d 60 - - - - - - 34 - 80 118 190 315 - - 36 60 - - - - 475 600 38 - 80 118 190 315 475 600 极限偏差 1 0.5 V带轮按腹板(轮辐)结构的不同分为以下几种型式: (1) 实心带轮:用于尺寸较小的带轮(dd(2.53)d时),如图7 -6a。 (2) 腹板带轮:用于中小尺寸的带轮(dd 300mm 时),如图7-6b。 (3) 孔板带轮:用于尺寸较大的带轮(ddd) 100 mm 时),如图7 -6c 。 (4) 椭圆轮辐带轮:用于尺寸大的带轮(dd 500mm 时),如图7-6d。(a) (b) (c) (d)图4.2 带轮结构类型图根据设计结果,可以得出结论:小带轮选择实心带轮,如图(a),大带轮选择腹板带轮如图(b)4.2 计算转速的计算(1)主轴的计算转速nj,由公式n=n得,主轴的计算转速nj=99.514r/min,取100 r/min。(2). 传动轴的计算转速 轴3=400r/min 轴2=400 r/min,轴1=800r/min。(2)确定各传动轴的计算转速。各计算转速入表4.6。表4.6 各轴计算转速轴 号 轴 轴 轴计算转速 r/min 800400400(3) 确定齿轮副的计算转速。齿轮Z装在主轴上其中只有100r/min传递全功率,故Zj=100 r/min。依次可以得出其余齿轮的计算转速,如表4.7。 表4.7 齿轮副计算转速序号ZZZZZn8004004004001004.3 齿轮模数计算及验算(1)模数计算。一般同一变速组内的齿轮取同一模数,选取负荷最重的小齿轮,按简化的接触疲劳强度公式进行计算,即mj=16338可得各组的模数,如表3-3所示。根据和计算齿轮模数,根据其中较大值取相近的标准模数:=16338=16338mm齿轮的最低转速r/min;顶定的齿轮工作期限,中型机床推存:=1524转速变化系数; 功率利用系数;材料强化系数。 (寿命系数)的极值齿轮等转动件在接取和弯曲交边载荷下的疲劳曲线指数m和基准顺环次数C0工作情况系数。中等中级的主运动: 动载荷系数;齿向载荷分布系数;齿形系数; 根据弯曲疲劳计算齿轮模数公式为: 式中:N计算齿轮转动递的额定功率N= 计算齿轮(小齿轮)的计算转速r/min 齿宽系数, Z1计算齿轮的齿数,一般取转动中最小齿轮的齿数: 大齿轮与小齿轮的齿数比,=;(+)用于外啮合,(-)号用于内啮合: 命系数; :工作期限 , =; =3.49=1.8=0.84 =0.58 =0.90 =0.55 =0.72 =3.49 0.84 0.58 0.55=0.94=1.80.84 0.90 0.72=0.99 时,取=,当时,取=;=0.85 =1.5; =1.2 =1 =0.378 许用弯曲应力,接触应力,() =354 =1750 6级材料的直齿轮材料选;24热处理S-C59 按接触疲劳计算齿轮模数m 1-2轴由公式mj=16338可得mj=2.7mm,取m=3mm2-3轴由公式mj=16338可得mj=2.4mm,取m=3mm3-4轴由公式mj=16338可得mj=3.4mm,取m=3.5mm由于一般同一变速组内的齿轮尽量取同一模数,所以为了统一和方便如下取:表4.8 模数组号基本组第一扩大组第二扩大组模数 mm 333.5(2) 基本组齿轮计算。基本组齿轮几何尺寸见下表表4.9 基本组齿轮计算表齿轮Z1Z1Z2Z2Z3Z3齿数303025352040分度圆直径90907510560120齿顶圆直径96968111166126齿根圆直径82.582.567.597.552.5112.5 齿宽242424242424 按基本组最小齿轮计算。小齿轮用40Cr,调质处理,硬度241HB246HB,平均取260HB,大齿轮用45钢,调质处理,硬度229HB246HB,平均取240HB。计算如下: 齿面接触疲劳强度计算: 接触应力验算公式为 弯曲应力验算公式为: 式中 N-传递的额定功率(kW),这里取N为电动机功率,N=5kW; -计算转速(r/min); m-初算的齿轮模数(mm), m=3(mm); B-齿宽(mm);B=24(mm); z-小齿轮齿数;z=20; u-小齿轮齿数与大齿轮齿数之比; -寿命系数; = -工作期限系数; T-齿轮工作期限,这里取T=15000h.; -齿轮的最低转速(r/min), =500(r/min) -基准循环次数,接触载荷取=,弯曲载荷取= m-疲劳曲线指数,接触载荷取m=3;弯曲载荷取m=6; -转速变化系数,查【5】2上,取=0.60 -功率利用系数,查【5】2上,取=0.78 -材料强化系数,查【5】2上, =0.60 -工作状况系数,取=1.1 -动载荷系数,查【5】2上,取=1 -齿向载荷分布系数,查【5】2上,=1 Y-齿形系数,查【5】2上,Y=0.386;-许用接触应力(MPa),查【4】,表4-7,取=650 Mpa;-许用弯曲应力(MPa),查【4】,表4-7,取=275 Mpa;根据上述公式,可求得及查取值可求得:=635 Mpa =78 Mpa(3)第一扩大组齿轮计算。 扩大组齿轮几何尺寸见下表 4.10 第一扩大组齿轮几何尺寸齿轮Z4Z4Z5Z5齿数42422262分度圆直径12612666186齿顶圆直径13213272192齿根圆直径118.5118.558.5178.5齿宽24242424(4)第二扩大组齿轮计算。 扩大组齿轮几何尺寸见下表 4.11第二扩大组齿轮几何尺寸齿轮Z6Z6Z7Z7齿数60301872分度圆直径21010563252齿顶圆直径21711270259齿根圆直径201.2596.2554.5243.5齿宽24242424按扩大组最小齿轮计算。小齿轮用40Cr,调质处理,硬度241HB246HB,平均取260HB,大齿轮用45钢,调质处理,硬度229HB246HB,平均取240HB。 同理根据基本组的计算,查文献【6】,可得 =0.62, =0.77,=0.60,=1.1,=1,=1,m=3.5,=355;可求得:=619 Mpa =135Mpa 4.4 传动轴的计算设计校核由【5】式6,传动轴直径按扭转刚度用下式计算: d=1.64(mm) 或 d=91(mm)式中 d-传动轴直径(mm) Tn-该轴传递的额定扭矩(N*mm) T=9550000; N-该轴传递的功率(KW) -该轴的计算转速 -该轴每米长度的允许扭转角,=。各轴的功率:取各传动件效率如下:带传动效率:轴承传动效率:齿轮传动效率:则有各传动轴传递功率计算如下:计算各轴的输入转矩:由机械原理可知转矩计算公式为: 以上计算数据总结如下:传动轴电机轴传动功率kw43.83.653.513.37传递转矩26.5351.1398.21267.84357.23传动轴的直径估算:当轴上有键槽时,d值应相应增大45%;当轴为花键轴时,可将估算的d值减小7%为花键轴的小径;空心轴时,d需乘以计算系数b,b值见机械设计手册表7-12。轴有键槽,轴和轴因为要安装滑移齿轮所以都采用花键轴,有键槽并且轴为空心轴.根据以上原则各轴的直径取值: a.轴的设计计算:(1)选择轴的材料由文献1中的表11-1和表11-3选用45号钢,调质处理,硬度,。(2)按扭矩初算轴径 根据文献1中式(11-2),并查表11-2,取C=115,则 考虑有键槽和轴承,轴加大5%:所以取d=22mmb. 轴的设计计算:(1)选择轴的材料由文献1中的表11-1和表11-3选用45号钢,调质处理,硬度,。(2)按扭矩初算轴径 根据文献1中式(11-2),并查表11-2,取C=115,则 考虑有键槽,轴加大5%:所以取最小d=30mmc. 轴的设计计算:(1)选择轴的材料由文献1中的表11-1和表11-3选用45号钢,调质处理,硬度,。(2)按扭矩初算轴径 根据文献1中式(11-2),并查表11-2,取C=115,则 有键槽和轴承,轴加大5%:; 取d=38mm.根据以上计算各轴的直径取值如下表示:轴轴轴轴最小轴径值223038(7)轴的结构设计及校核计算:(1)确定轴各段直径和长度:图4 II轴尺寸图段:安装圆锥滚子轴承, 段:安装两个个双联齿轮块,同时利用轴肩定位轴承,由轴肩计算公式 所以取;段:安装圆锥滚子轴承,(2)轴的强度校核:轴的校核主要校核危险截面已知轴齿轮6、齿轮8数据如下:求圆周力:;径向力;轴承支反力:齿轮6对轴的支反力:齿轮8对轴的支反力:垂直面的弯矩:由以上计算可知危险截面在轴的右端齿轮6处,跨距282mm;直径为48mm段;轴承的支反力:水平面弯矩:合成弯矩:已知转矩为:转矩产生的剪力按脉动循环变化,取截面C处的当量弯矩:校核危险截面C的强度则有该轴强度满足要求。同理可知,按照此方法校核其他传动轴,经检验,传动轴设计均符合要求。图5 转矩图4. 主轴设计计算及校核主轴上的结构尺寸虽然很多,但起决定作用的尺寸是:外径D、孔径d、悬伸量a和支撑跨距L。图6 主轴设计图1.主轴前后轴颈直径的选择:主轴的外径尺寸,关键是主轴前轴颈直径。一般按照机床类型、主轴传递的功率或最大加工直径,参考表3-7选取。最大回转直径400mm铣床,P=4KW查机械制造装备设计表3-7,前轴颈应,初选,后轴颈取。2.主轴内孔直径的确定:很多机床的主轴是空心的,为了不过多的削主轴刚度,一般应保证d/D 0.7。取;经计算选取内孔直径d=40mm。3.主轴前端伸长量a:减小主轴前端伸长量对提高提高主轴组件的旋转精度、刚度、和抗震性有显著效果,因此在主轴设计时,在满足结构的前提下,应最大限度的缩短主轴悬伸量a。根据结构,定悬伸长度;取a=100mm。4.支撑跨距L: 最佳跨距;取值合理跨距;取值。5.主轴刚度校验:机床在切削加工过程中,主轴的负荷较重,而允许的变形由很小,因此决定主轴结构尺寸的主要因素是它的变形大小。对于普通机床的主轴,一般只进行刚度验算。通常能满足刚度要求的主轴,也能满足强度要求。只有重载荷的机床的主轴才进行强度验算。对于高速主轴,还要进行临界转速的验算,以免发生共振。 一弯曲变形为主的机床主轴(如铣床、铣床),需要进行弯曲刚度验算,以扭转变形为主的机床(如钻床),需要进行扭转刚度验算。当前主轴组件刚度验算方法较多,没能统一,还属近似计算,刚度的允许值也未做规定。考虑动态因素的计算方法,如根据部产生切削颤动条件来确定主轴组件刚度,计算较为复杂。现在仍多用静态计算法,计算简单,也较适用。主轴弯曲刚度的验算;验算内容有两项:其一,验算主轴前支撑处的变形转角,是否满足轴承正常工作的要求;其二,验算主轴悬伸端处的变形位移y,是否满足加工精度的要求。对于粗加工机床需要验算、y值;对于精加工或半精加工机床值需验算y值;对于可进行粗加工由能进行半精的机床(如卧式铣床),需要验算值,同时还需要按不同加工条件验算y值。支撑主轴组件的刚度验算,可按两支撑结构近似计算。如前后支撑为紧支撑、中间支撑位松支撑,可舍弃中间支撑不计(因轴承间隙较大,主要起阻尼作用,对刚度影响较小);若前中支撑位紧支撑、后支撑为松支撑时,可将前中支距当做两支撑的之距计算,中后支撑段主轴不计。机床粗加工时,主轴的变形最大,主轴前支撑处的转角有可能超过允许值,故应验算此处的转角。因主轴中(后)支撑的变形一般较小,故可不必计算。5.2 零件验算5.2.1 主轴刚度5.2.1.1 主轴支撑跨距的确定前端悬伸量:主轴前端的悬伸长度,即从主轴外侧前支撑中点(滚锥轴承及向心推力轴承则是接触角法线与轴线的交点处)到主轴前端的距离。这里选定。一般最佳跨距,考虑到结构以及支承刚度会因磨损而不断降低,应取跨距比最佳支承跨距 大一些,一般是的倍,再综合考虑结构的需要,本设计取。5.2.1.2 最大切削合力P的确定最大圆周切削力须按主轴输出全功率和最大扭矩确定(4-8)其中:电动机额定功率(),;主传动系统的总效率,为各传动副、轴承的效率,总效率。由前文计算结果, 。取;主轴的计算转速,由前文计算结果,主轴的计算转速为;计算直径,对于卧式铣床,为最大端铣刀计算直径,对于工作台宽度为250mm的卧式铣床,其端铣刀的计算直径及宽度分别为,。可以得到,验算主轴组件刚度时,须求出作用在垂直于主轴轴线的平面内的最大切削合力。对于卧式升降台铣床的铣削力,一般按端铣计算。不妨假设本铣床进给系统的末端传动副有消隙机构,应采用不对称顺铣,则各切削分力、同的比值可大致认为; ; 。则,即与水平面成角,在水平面的投影与成角。5.2.1.3 切削力作用点的确定设切削力的作用点到主轴前支撑的距离为 (4-9)其中:主轴前端的悬伸长度,;对于普通升降台铣床。可以得到,5.2.1.4 齿轮驱动力Q的确定齿轮传动轴受输入扭矩的齿轮驱动力的作用而产生弯曲变形,当齿轮为直齿圆柱齿轮时,其啮合角,齿面摩擦角时,其弯曲载荷(4-10)其中:齿轮传递的全功率(),取;该齿轮的模数、齿数;该传动轴的计算工况转速。可以得到,5.2.1.5 变形量允许值的确定变形量允许值:对普通机床前端挠度的允许值,目前广泛 使用的经验数据(4-11)其中:主轴两支撑间的距离,。可以得到,5.2.1.6 主轴组件的静刚度验算图 4-4主轴组件纵向视图力的分布图 4-5主轴组件横向视图力的分布选定如图的直角坐标系,求各力同时作用下,前后轴承负荷的大小及其方向角,并判定象限。建立方程组计算主轴前后支撑处的支反力。的方向:的方向:在点的水平投影:在点的垂直投影:可以得到,即,方向与轴正方向夹角。,方向与轴正方向夹角。前后轴承的负荷大小与支反力大小相同,方向相反。故前后轴承的负荷为:,方向与轴正方向夹角。,方向与轴正方向夹角。按轴承的合成负荷,计算轴承的弹性位移。滚动轴承的径向刚度是支承刚度的主要部分,支承刚度还包括轴承环与轴颈及箱体孔的配合表面间的接触刚度。预紧的滚动轴承可以提高刚度。计算时可以忽略轴承环与轴颈以及箱体孔之间的接触刚度。仅以滚动轴承的游隙为零时,承受径向载荷来计算轴承的径向刚度,圆锥滚子轴承的径向刚度(4-12)其中:滚动体列数;每列中滚动体数;滚子有效长度;轴承的径向负荷;轴承的接触角。可以得到,前后支承轴承的弹性位移,分别计算各作用力对弹性主轴前端点产生的挠度。由简单载荷下简支轴的变形公式,轴自身变形引起的轴点挠度公式(4-13) (4-14) 其中:载荷力;材料的弹性模量,钢的;分别为轴的的抗弯惯性矩 (4-15)可以得到,可以得到,共同作用下,点的挠度分解将轴承的弹性位移分解为直角坐标分量,并计算它对主轴前端点产生的相应挠度值。点:点:在水平面(方向)点产生的挠度:在垂直面(方向)点产生的挠度:可以得到,将主轴组件前端c 点在直角坐标上的各分量进行代数叠加后,再合成综合挠度值并计算其方向角。分量:合成:方向角:由综合挠度,可见,故主轴通过校核。5.2.2 传动轴刚度5.2.2.1 齿轮驱动力Q的确定齿轮传动轴同时受输入扭矩的齿轮驱动力和输出扭矩的齿轮驱动阻力的作用而产生弯曲变形,当齿轮为直齿圆柱齿轮,其啮合角,齿面摩擦角时,其弯曲载荷(4-16)其中:该齿轮传递的全功率,取; 该齿轮的模数和齿数; 该传动轴的计算工况转速; 该轴输入扭矩的齿轮计算转速; 该轴输出扭矩的齿轮计算转速。由于轴上有三种不同的驱动力和三种不同的驱动阻力,故驱动力具体的计算结果在下文讨论。5.2.2.2 变形量允许值的确定齿轮传动轴的抗弯刚度验算,包括轴的最大挠度,滚动轴承处及齿轮安装处的倾角验算。其值均应小于允许变形量及,允许变形量可由参考文献4查得。由参考文献3知,对于传动轴,仅需要进行刚度计算,无须进行强度验算。5.2.2.3 主轴组件的挠度验算图5-4 传动轴II载荷分布其中是变速组1的驱动力,且3个驱动力不能同时作用;是变速组2的驱动阻力,且3个驱动阻力不能同时作用。可以得到对于输出驱动阻力,由于各种情况转速不定,故应在选定校核用轴速度以后计算。为了计算上的简便,可以近似地以该轴的中点挠度代替最大挠度,其最大误差不超过3%。由参考文献4,若两支承的齿轮传动轴为实心的圆形钢轴,忽略其支承变形,在单位弯曲载荷作用下,其中点挠度(4-17)其中:两支承间的跨距,;该轴的平均直径,;(4-18) 齿轮的工作位置至较近支撑点的距离; 输入扭矩的齿轮在轴的中点引起的挠度; 输出扭矩的齿轮在轴的中点引起的挠度;其余各符号定义与前文一致。可以得到,;。可以得到故引起的中点挠度最大,在计算合成挠度时使用,进行计算。此时轴转速为。可以得到,可以得到,故引起的中点挠度最大,在计算合成挠度时使用,进行计算。由参考文献4,中点的合成挠度(4-19)其中:被验算轴的中点合成挠度;在横截面上,被验算的轴与其前、后传动轴连心线的夹角;驱动力和阻力在横截面上,两向量合成时的夹角。(4-20)可以得到可以得到由综合挠度,可见,满足要求。由参考文献4,传动轴在支承点A、B处的倾角、(4-21)可以得到,可见,满足要求,故不用计算传动轴在齿轮处的倾角。综上,传动轴通过校核。5.2.3 齿轮疲劳强度验算变速箱中齿轮强度时,选择相同模数中承受载荷最大的及齿数最小的齿轮进行接触应力和弯曲应力计算。一般对高速转动的齿轮验算齿面接触应力,对低速转动的齿轮验算齿根弯曲应力。对硬齿面软芯的渗淬火齿轮,一定要验算弯曲应力。因而此处仅验算与 这对齿轮。由参考文献4,齿面接触应力(4-22)齿根弯曲应力(4-23)其中:初算得到的齿轮模数,;传递的额定功率,;齿轮的计算转速,;大齿轮齿数与小齿轮齿数之比,外啮合取“”号,内啮合取“”号;小齿轮的齿数;齿宽;许用接触应力,由参考文献5表13-16,齿轮材料选用45钢,高频淬火,可得;许用弯曲应力,;寿命系数;(4-24)工作期限系数;(4-25)齿轮在机床工作期限内的总工作时间,对于中型机床的齿轮,取,统一变速组内的齿轮总工作时间可近似地认为,为该变速组的传动副数,取,则;齿轮的最低转速,取;基准循环次数,对于钢和铸铁件,接触载荷取,弯曲载荷取;疲劳曲线指数,接触载荷取,弯曲载荷对正火、调质及整体淬硬件取,对表面淬硬(高频、渗碳、氮化等)件取;可以得到,;功率利用系数,取;转速变化系数,取;材料强化系数,取;可以得到,;齿向载荷分布系数,取;动载荷系数,取;工作状况系数,考虑载荷冲击的影响,主运动(中等冲击)取;齿形系数,取。可以得到,可见,。综上,齿轮通过校核。6.轴承的选用及校核1】各传动轴轴承选取的型号:主轴 前支承: NN3018K 型 圆锥孔双列圆柱滚子轴承:9014037;后支撑:352212 双列圆锥滚子轴承:6011066;轴 带轮处:308 深沟球轴承轴409023;轴与箱体处:305 GB276-89:256217;齿轮:7305C 角接触轴承GB292-83:255215; 轴 前、后支承:7306E 圆锥滚子轴承GBT297-84 :307219; 轴 前、后支承:7308E 圆锥滚子轴承GBT297-84 :409023;2】各传动轴轴承的校核:假定:按两班制工作,工作期限10年,每年按300天计,T=48000h。依据机械设计轴承校核公式如下:轴轴承校核:已知选用轴承为:深沟球轴承 305 GB276-89:256217;基本额定动载荷;由于该轴的转速为定值710r/min;依据设计要求应对轴末端轴承进行校核。最小齿轮直径;轴传递转矩齿轮受到的切向力齿轮受到的轴向力齿轮受到的径向力因此轴承当量动载荷因此该轴承符合要求,选取合适。同理可校核其他传动轴轴承,经校核各轴轴承选取均合适。7.键的选用及校核轴上的键的选用和强度校核:轴与齿轮的联接采用普通平键联接,轴径d=48mm;齿轮快厚度L=78.5mm;传递扭矩;选用A型平键,初选键型号为,。查机械设计表7-9得。由机械设计式(7-14)
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。