




已阅读5页,还剩89页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
行政职业能力测试常用公式 常用周长公式: 正方形的周长;长方形的周长;圆形的周长。 注意:处理三角形周长问题时要注意“三角形两边和大于第三边,两边差小于第三边。” 常用面积公式: 正方形面积; 长方形面积; 圆形面积 三角形面积;正三角形面积;平行四边形面积; 梯形面积;正六边形面积;扇形面积 常用角度公式:三角形内角和180,N边形内角和为(N-2)180 常用表面积公式: 正方体表面积=6a2;长方体表面积=2ab+2bc+2ac;球的表面积; 圆柱的表面积,侧面积,底面积常用体积公式: 正方体的体积=a3;长方体的体积=abc;球的体积; 圆柱的体积;圆锥的体积 常用几何性质: 若将一个图形扩大N倍,则:对应角度仍为原来1倍;对应长度变为原来的N1倍;面积变为原来的(N1)2倍;体积变为原来的(N1)3倍。 不规则图形常用解题技巧:割补法 公式法常用幂次数平方数底数1234567891011平方149162536496481100121底数1213141516171819202122平方144169196225256289324361400441484底数2324252627282930313233平方52957662567672978484190096110241089 立方数底数1234567891011立方18276412521634351272910001331多次方数次方12345678910112248163264128256512102420483392781243129441664256102455251256253125663621612967776幂次数记忆方法: 1.对于常用的幂次数字,考生务必将其牢记在心,这不仅对于数字推理的解题很重要,对数学运算乃至资料分析试题的迅速、准确解答都起着至关重要的作用; 2.很多数字的幂次数都是相通的,比如7299336272,2562844162等; 3.“2129”的平方数是相联系的,以25为中心,24与26、23与27、22与28、21与29,它们的平方数分别相差100、200、数量关系数字推理题基本步骤数量关系中同余问题核心解题口诀-数量关系之数字推理 几条解决数字推理问题的优先法则:1.数列项数很多,优先考虑组合数列。2.数列出现特征数字,优先从特征数字入手。3.数字增幅越来越大,优先从乘积、多次方角度考虑。4.数列递增或递减,但幅度缓和,优先考虑相邻两项之差。5.数列各项之间倍数关系明显,考虑作商或积数列及其变式。6.分析题干数字的同时要结合选项中的数字,进一步判断数列规律。 数字推理的六大解题方法1、从相邻项之差入手 考虑数列相邻项之差是解决数字推理问题的第一思维,在各类公务员考试数字推理题中等差数列及其变式出现的频率很大,也是必考题型,通过对数列相邻两项依次求差,得到新的数列,然后分析这个新数列的规律,可以直接或间接地得到原数列的规律。等差数列及其变式所涉及的题型主要有二级等差数列及其变式和三级等差数列及其变式,很多情况下(三级等差数列及其变式)需要连续做差才能发现其中的规律。特别注意的是,当所缺项位于数列中间时,由于从题干入手不能持续求差,这些题往往表现出一定的难度,此时需要假设其中的规律,然后通过做差加以验证。例题: 1.5,5,5,12,5, ( )A.3 B.1C.24 D.26解题分析:此题的题干数字对解题的提示作用不大,思路不明的时候还是从相邻两项之差入手,相邻两项之差依次是3.5,0,7,-7,这几个数的特征和规律也是很不明显,再次做差得到-3.5,7,-14,可以看出是公比为-2的等比数列,此题便得到了解决。等差数列的变式情况很多,上题即是一个三级等差数列变式,由于第三级数列是一个正负交替的等比数列,所以题干数字并没有表现出明显的递增和递减趋势,这一类题难度较大。2、分析相邻项之间的商、和、积 当题干数列某两项(或三项)的和、积、商关系明显时,可以优先考虑这种方法,此时从局部分析数列的能力显得尤为重要。考虑数列相邻项之和的方式主要有相邻两项之和与相邻三项之和。当数列数字有明显上升趋势,可以考虑相邻项之和或积;当数列相邻项之间存在明显的比例关系时,可以考虑相邻项的商。例题: 2/3, 3, 4,14,58, ( )A.814 B.836C.802 D.828解题分析:先看题干和选项,数字由14、58,变化到800多,这种信号暗示我们要从相邻项的乘积考虑,再看数列第一项为分数,与第二项3的乘积刚好为整数,这更确定了思路是正确的,简单比较发现,第一项与第二项求积,再加2得到了第三项,通过后面几项得到了验证,1458=812,812+2=814,答案为A。3、猜证数列各项之间的运算关系 数字推理规律种类繁多,其中一个大的类型就是数列各项在横向上存在相同或连续性的四则运算关系。比较常见的类型有两种,一是前一项经过运算得到后一项,二是前面两项经过运算得到第三项。解这类题,往往通过对某几项(例如前两项或前三项)的分析,假设其中的规律,然后通过其他项加以验证,这中间可能有不断尝试的过程,一般从小数字入手。最为常见有以下几种: 前一项的倍数加常数或基本数列得到下一项;第一项的倍数加第二项的倍数得到第三项;前一项加上后一项简单运算后的结果得到第三项。例题: 2, 5, 17, 71, ( )A.149 B.359C.273 D.463解题分析:此题题干数字递增,再结合选项来看,涉及到倍数的可能较大,于是大致确定数字推理规律应是数列各项之间的运算关系。优先考虑前项运算得到后项的方式,先分析由第一项2到第二项5,可以是2的2倍加1、2的平方加1、2的3倍减1,这时应想到一是倍数可能按规律变化,二是常数可能规律变化,结合第二项的5运算至17的方式(5的3倍加2、5的4倍减3),最后确定了此题的规律。22+1=5,53+1=17,174+3=71,715+4=359,其中乘数2、3、4、5和加数1、2、3、4都是连续自然数。熟悉数字之间的运算关系对于解决数字推理问题十分重要,形成了一定的数字敏感度之后,解这类题就是一种直觉,平时应多加练习。4、考虑数列各项的通项 在公务员考试数字推理题中,经常出现这样一类数列,数列各项可以用相类似的形式表示出来,如数列各项均可写成自然数的平方加1、数列各项均可写成连续自然数与连续质数的乘积这一解题思路和基本数列类型中的多次方数列及其变式和整数乘积拆分数列相对应。例:例题: 0,15,26,15,4, ( )A.3 B.2C.1 D.05、注意结构和位置 数字推理题中广泛出现了组合数列,包括间隔组合数列和分组组合数列两大类,这类题难度不大,关键在于通过对数列整体上的考察,发现其结构上的特点。在解决图形形式数字推理时,考虑图形的结构和图形中数字的位置就更加重要。例题: 2,3,6,9,14,15,30, ( )A.21 B.37C.35 D.24解题分析:此题项数较多,间隔组合数列应优先考虑,奇数项依次是2、6、14、30,相邻两项依次做差得4、8、16,是公比为2的等比数列,于是认为奇数项是二级等差数列变式,这就肯定了此题是间隔组合数列的想法,再看偶数项,依次是3、9、15、( ),由前三项可假设是一个公差为6的等差数列,则应填入21,答案为A。6、探求数列的整体特征 近年来数字推理求新求异,出现了许多创新形式的数字推理规律,这其中有很大一部分是考察数列各项的共有特征。数列各项表现出的共有特征主要存在于以下几个方面:整除性、质合性、排列顺序、数位组合运算、各位数字之和。例题: 422,352,516, 743,682, ( )A.628 B.576C.495 D.729解题分析:数列各项都为三位数,数字增减不定,分析发现数字推理规律只能是各类创新形式数字推理规律之一。此题考察了数列各位数字之和,各项各位数字之和依次是8、10、12、14、16,因此所缺数字的各位数字之和应是18,即构成公差为2的等差数列。检查选项,发现B、C、D两项都符合这一特征,此时必须再加以分析,观察发现,数列每一项都有一个数字等于其他数字之和,第一项:4=2+2,第二项:5=3+2,第三项:6=5+1,第四项:7=4+3,第五项8=6+2,并且可以看出这个较大的数字在百位、十位、个位循环出现,因此最后一项这个较大数字应出现在个位,这样答案就唯一确定了,选D。计算问题基础知识储备 计算问题是数学运算常考题型之一,同时也是其他题型的基础。计算问题主要考查考生对数字的计算能力,主要包括算式计算、数列计算、平均数与均值不等式、比较大小、定义新运算等。常用方法有公式法、尾数法、提取公因式法等。下面,中公教育专家就为大家进行讲解。 一、算式计算加法和乘法的相关法则非常简单,平时都会用到,这里列举出来,大家只需要理解其含义。幂次和运算公式的相关法则,在公务员考试中使用比较频繁,需要重点记忆。 二、数列计算 等差数列:从第二项起,每一项与前一项之差为一个常数的数列。该常数称为公差,记为d。 等比数列:从第二项起,每一项与前一项之商为一个非零常数的数列。该常数称为公比,记为q。各种数列公式表公务员考试重点考查等差数列相关性质以及各数列求和公式。 三、平均数与均值不等式 例:某人射击10次,其中2次射中10环,3次射中8环,4次射中7环,1次射中9环,那么他平均射中的环数按算术平均数来算:(10+8+7+9)4就是错误的。因为射中的次数不同(即权重不同),必须考虑比重(权重),应该按照加权平均数来计算:(210+38+47+19)10=8.1分。 实际上,算术平均数是加权平均数的一种特殊形式每个数出现的次数相等,在实际问题中,当每个数出现次数不相等时,计算平均数时就要采用加权平均数。 四、比较大小 比较大小的常用方法有:作差法、作商法、倒数法、中间值法。 五、定义新运算这类题目只需要将新定义的运算符号转化为常规的四则运算符号即可。几何最值理论1、 平面图形中,若周长一定,越接近于圆,面积越大。2、 平面图形中,若面积一定,越接近于圆,周长越小。3、 立体图形中,若表面积一定,越接近于球,体积越大。4、 立体图形中,若体积一定,越接近于球,表面积越大。行政职业能力测试公式上篇 数学运算第一章 代入与排除法第一节 直接代入法第二节 倍数特性发第三届 综合特性法第二章 转化与划归法第一节 划归为一法第二节 比例假设法第三届 工程问题第三章 典型解题技巧第一节 十字交叉法第二节 构造设定法第三节 极端思维法第四节 枚举归纳法第五节 逆向分析法第四章 方程与不等式第一节 基本方程思维第二节 不定方程与不定方程组第三节 不等式思想第四节 盈亏与鸡兔同笼问题第五节 和差倍比问题第五章 基础运算模块第一节 常规计算问题第二节 典型运算模型第三节 运算拓展题型第四节 数列综合运算第六章 计数问题模块第一节 容斥原理第二节 排列组合第三节 概率问题第四节 抽屉原理第五节 指数增长第七章 比例计算模块第一节 溶液问题第二节 牛吃草问题第三节 钟表问题第八章 初等数学模块第一节 约数倍数问题第二节 多位数问题第三节 余数同余问题第四节 平均数值问题第五节 星期日期问题第六节 循环周期问题第九章 行程问题模块第一节 基础行程问题第二节 拓展行程问题第三节 相对速度问题第四节 典型行程题型第十章 几何问题模块第一节 几何公式法第二节 割补平移法第三节 几何特性法第四节 中学几何问题第五节 几何边端问题第十一章 趣味杂题模块第一节 比赛问题第二节 年龄问题第三节 统筹问题第四节 过河爬井问题第五节 推断问题第六节 经济利润问题下篇 数字推理第一章 基础知识与基本思维第一节 基础数列第二节 数列试错第三节 因式分解第四节 题型概览第二章 多级数列第一节 二级数列第二节 三级数列第三节 商和多级数列第四节 拓展多级数列第三章 多重数列第一节 交叉数列第二节 分组数列第三节 机械分组第四章 分数数列第一节 基础技巧数列第二节 反约分型数列第三节 分数拓展数列第五章 幂次数列第一节 基础幂次数列第二节 幂次修正数列第六章 递推数列第一节 递推基本形式第二节 整体趋势法第三节 递推联系法第四节 地推拓展题型第七章 图形数列第一节 圆圈题第二节 九宫格第三节 题型拓展上篇 数学运算第一章 代入与排除法第一节 直接代入法一、适用题型多位数问题、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题、和差倍比问题等。二、例题精析【例题】例1:一个产品生产线分为abc三段,每个人每小时分别完成10、5、6件,现在总人数为71人,要使得完成的件数最大,71人的安排分别是( B )A.14:28:19 B.15:31:25 C.16:32:23 D.17:33:21【解析】直接代入验证。例2:体育课上,全班同学站成一排按1至5报数,凡报到5的同学出列。余下的同学仍按1至5报数,同样报到5的同学出列。这样进行了6轮,还剩下19人,则全班共有人数可能为()114827466【解析】直接代入,报5的人数应该是“总数除以5,再取其整数部分”。A选项:114(-22)92(-18)74(-14)60(-12)48(-9)39(-7)32,排除A。B选项:82(-16)66(-13)53(-10)43(-8)35(-7)28(-5)23,排除B。C选项:74(-14)60(-12)48(-9)39(-7)32(-6)26(-5)21,排除A。D选项:66(-13)53(-10)43(-8)35(-7)28(-5)23(-4)19,排除A。数量关系分类型讲解-质数与合数自然数是同学们最熟悉的数.全体自然数可以按照约数的个数进行分类.像2、3、5这样仅有1和它本身两个约数的自然数,称为质数(或素数).像4、6、8这样除了1和它本身以外,还有其它约数的自然数,称为合数.1只有一个约数,就是它本身.1既不是质数也不是合数、称为单位1.因此,全体自然数分成了三类:数1;全体质数;全体合数.任何一个合数都可以分解成若干个质因数乘积的形式,并且分法是唯一的,这个结论被称为算术基本定理.第二节 倍数特性法一、倍数特性2、4、8整除及余数判定基本法则1.一个数能被2或5整除,当且仅当其末一位数能被2或5整除;2.一个数能被4或25整除,当且仅当其末一位数能被4或25整除;3.一个数能被8或125整除,当且仅当其末一位数能被8或125整除;4.一个数能被2或5除得的余数,就是其末一位数能被2或5除得的余数;5.一个数能被4或25除得的余数,就是其末一位数能被4或25除得的余数;6. 一个数能被8或125除得的余数,就是其末一位数能被8或125除得的余数。【示例】3252的末两位数字“52”能被4整除3752能被4整除【示例】2988的末三位数字“988”不能被8整除2988不能被8整除【示例】25198903的末两位数字“03”除以4余325198903除以4余33、9整除及余数判定基本法则1.一个数能被3整除,当且仅当其各位数字和能被3整除;2.一个数能被9整除,当且仅当其各位数字和能被9整除;3.一个数被3除得的余数,就是其各位数字和被3除得的余数;4.一个数被9除得的余数,就是其各位数字和被9除得的余数。【示例】1941各位数字之和1+9+4+1=15能被3整除,1941能被3整除【示例】39130825198368各位数字之和3+9+1+3+0+8+2+5+1+9+8+3+6+8=6666不能被9整除,这个数字不能被9整除66除以9余3,这个数字除以9余37整除判定基本法则1. 一个数是7的倍数,当且仅当其末一位的两倍,与剩下的数之差为7的倍数;2. 一个数是7的倍数,当且仅当其末三位数,与剩下的数之差为7的倍数。【示例】362的末一位“2”的2倍与“36”之差“32”不能被7整除,362不能被7整除【示例】12047的末三位“047”与“12”之差“35”能被7整除12047能被7整除11整除判定基本法则1.一个数是11的倍数,当且仅当其奇数位之和与偶数位之和的差值为11的倍数;2.一个数是11的倍数,当且仅当其末三位数,与剩下的数之差为11的倍数。【示例】7394奇数位之和“7+9=16”与偶数位之和“3+4=7”的差值“16-7=9”不是11的倍数,7394不能被11整除【示例】15235末三位“235”与剩下的“15”之差“220”能被11整除15235能被11整除13整除判定基本法则一个数是13的倍数,当且仅当其末三位数,与剩下的数之差为13的倍数。【示例】181235末三位“235”与“181”差“54”不能被13整除,181235不能被13整除【示例】324546末三位“546”与“624”差“78”能被13整除624546能被13整除巧解数量关系题常用18条数字整除特征:(1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有a/1=a;0是任何非零整数的倍数,a0,a为整数,则0|a=0。(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。(3)若一个整数的数字和能被3整除,则这个整数能被3整除。(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。(5)若一个整数的末位是0或5,则这个数能被5整除。(6)若一个整数能被2和3整除,则这个数能被6整除。(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13327,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:61392595 , 595249,所以6139是7的倍数,余类推。(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。(9)若一个整数的数字和能被9整除,则这个整数能被9整除。(10)若一个整数的末位是0,则这个数能被10整除。(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的割尾法处理!过程唯一不同的是:倍数不是2而是1!(12)若一个整数能被3和4整除,则这个数能被12整除。(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。数字的整除特性我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。因此,有下面的结论: 1末位数字为0、2、4、6、8的整数都能被2整除。偶数总可表为2k,奇数总可表为2k1(其中k为整数)。2末位数字为零的整数必被10整除。这种数总可表为10k(其中k为整数)。3末位数字为0或5的整数必被5整除,可表为5k(k为整数)。4末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。如1996190096,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。由于496能被25整除的整数,末两位数只可能是00、25、50、75。能被4整除的整数,末两位数只可能是00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。5末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。由于10008125,因此,1000的倍数当然也是8和125的倍数。如判断765432是否能被8整除。因为765432765000432显然8|765000,故只要考察8是否整除432即可。由于432854,即8|432,所以8|765432。能被8整除的整数,末三位只能是000,008,016,024,984,992。由于1251125,1252250,1253375;1254500,1255625;1256750;1257875;125810000故能被125整除的整数,末三位数只能是000,125,250,375,500,625,750, 875。6各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。如478323是否能被3(9)整除?由于478323410000071000081000310021034(999991)7(99991)8(9991)3(991)2(91)3(49999979999899939929)(478323)前一括号里的各项都是3(9)的倍数,因此,判断478323是否能被3(9)整除,只要考察第二括号的各数之和(478323)能否被3(9)整除。而第二括号内各数之和,恰好是原数478323各个数位上数字之和。47832327是3(9)的倍数,故知478323是3(9)的倍数。在实际考察478323是否被3(9)整除时,总可将3(9)的倍数划掉不予考虑。即考虑被3整除时,划去7、2、3、3,只看48,考虑被9整除时,由于729,故可直接划去7、2,只考虑4833即可。如考察9876543被9除时是否整除,可以只考察数字和(9876543)是否被9整除,还可划去9、54、63,即只考察8如问3是否整除9876543,则先可将9、6、3划去,再考虑其他数位上数字之和。由于3|(8754),故有3|9876543。实际上,一个整数各个数位上数字之和被3(9)除所得的余数,就是这个整数被3(9)除所得的余数。7一个整数的奇数位数字和与偶数位数字和的差如果是11的倍数,那么这个整数也是11的倍数。(一个整数的个位、百位、万位、称为奇数位,十位、千位、百万位称为偶数位。)如判断42559能否被11整除。4255941000021000510051094(99991)2(10011)5(991)5(111)9(4999921001599511)(42559)11(4909291595)(42559)前一部分显然是11的倍数。因此判断42559是否11的倍数只要看后一部分42559是否为11的倍数。而42559(459)(25)恰为奇数位上数字之和减去偶数位上数字之和的差。由于(459)(25)11是11的倍数,故42559是11的倍数。现在要判断7295871是否为11的倍数,只须直接计算(1897)(752)是否为11的倍数即可。由251411知(1897)(752)是1的倍数,故11|7295871。上面所举的例子,是奇数位数字和大于偶数位数字和的情形。如果奇数位数字和小于偶数位数字和(即我们平时认为“不够减”),那么该怎么办呢?如867493的奇数位数字和为346,而偶数位数字和为978。显然346小于978,即13小于24。遇到这种情况,可在1324这种式子后面依次加上11,直至“够减”为止。由于1324110,恰为11的倍数,所以知道867493必是11的倍数。又如738292的奇数位数字和与偶数位数字和的差为(223)(987)72472411115(加了两次11使“够减”)。由于5不能被11整除,故可立即判断738292不能被11整除。实际上,一个整数被11除所得的余数,即是这个整数的奇数位数字和与偶数位数字和的差被11除所得的余数(不够减时依次加11直至够减为止)。同学们还会发现:任何一个三位数连写两次组成的六位数一定能被11整除。如186这个三位数,连写两次成为六位数186186。由于这个六位数的奇数位数字和为618,偶数位数字和为861,它们的差恰好为零,故186186是11的倍数。数位数字和为cab,偶数位数字和为bca,它们的差恰为零,象这样由三位数连写两次组成的六位数是否能被7整除呢?如186186被7试除后商为26598,余数为零,即7186186。能否不做1861867,而有较简单的判断办法呢?由于18618618600018618610001861861001而100171113,所以186186一定能被7整除。这就启发我们考虑,由于711131001,故若一个数被1001整除,则这个数必被7整除,也被11和13整除。或将一个数分为两部分的和或差,如果其中一部分为1001的倍数,另一部分为7(11或13)的倍数,那么原数也一定是7(11或13)的倍数。如判断2839704是否是7的倍数?由于283970428390007042839100070428391001283970428391001(2839704)28397042135是7的倍数,所以2839704也是7的倍数;2135不是11(13)的倍数,所以2839704也不是11(13)的倍数。实际上,对于283904这样一个七位数,要判断它是否为7(11或13)的倍数,只需将它分为2839和704两个数,看它们的差是否被7(11或13)整除即可。又如判断42952是否被13整除,可将42952分为42和952两个数,只要看95242910是否被13整除即可。由于9101370,所以13|910,二、例题解析题型一:直接倍数【例1】某人共收集邮票若干张,其中1/4是2007年以前的国内外发行的邮票,1/8是2008年国内发行的,1/19是2009年国内发行的,此外有不足100张的国外邮票。则该人共有(C)张邮票A.87 B.127 C152 D.239【解析】很明显,答案应该是4的倍数,选择C。【例2】一本书,小明已看了130页,剩下的准备8天看完。如果每天看的页数相等,3天看的页数恰好是全书的5/22,这本书共有(B )页。A.324 B.330 C429 D.457【解析】根据“3天看的页数恰好是全书的5/22”可知,全书的页数一定是22的倍数,只有B符合。【例5】 (浙江2010-78)一个四位数“”分别能被15、12和10除尽,且被这三个数除尽时所得三个商的和为1365,问四位数“”中四个数字的和是多少?()A. 17B. 16C. 15D. 14答案 C解析 这个四位数能被15整除,因此肯定是3的倍数,其各位数字相加也肯定是3的倍数,根据选项,选择C。点睛 假设这个数为x,则:x15+x12+x10=1365x=5460。【例6】 (2011年424联考-43)某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号。凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和可能是多少?()A. 9B. 12C. 15D. 18答案 B解析 第三名员工的工号,加上6之后,应该是第九名员工的工号,应该是9的倍数,所以第三名员工的工号各位数字之和,加上6,也应该是9的倍数,因此选择B。题型二:因子倍数【例1】某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人( )A.329 B.350 C371 D.504【解析】进今年男员工是去年的1-6%=94%,那么数字里面肯定有因子47,选A。【例10】 (上海2011A-59、上海2011B-59)某超市用2500元购进一批鸡蛋,销售过程中损耗鸡蛋10千克。已知超市每千克鸡蛋的售价比进价高1元,全部售完后共赚440元,则共购进这批鸡蛋()千克。A. 460B. 500C. 590D. 610答案 B解析 假设购进了鸡蛋n千克,则:2500n+1n-10-2500=440,很明显,n如果取460、590、610这样的数值,代入原方程将出现消不去的复杂因子。所以选择B。【例11】 甲、乙、丙三队共有10名选手参加围棋比赛。每名选手都与其余9名选手各赛一局,每局棋胜者得1分,负者得0分,平局各得0.5分。结果甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分,甲队有()名选手参赛。A. 4B. 5C. 6D. 7答案 A解析 根据规则,每队的总分肯定是整数,或者“整数+0.5”的形式,而乙队平均分为3.6分,说明其人数肯定有因子5,才能保证其满足前面所述要求。总共才10人,说明乙队正好5人,那么甲队肯定不到5人,结合选项,选择A。【例12】 (湖北2009-93)赵先生 34岁,钱女士30岁。一天他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说:他们三人的年龄各不相同,三人的年龄之积是2450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁?()A. 42B. 45C. 49D. 50答案 C解析 假设这三人年龄从大至小分别为x、y、z岁,则:x+y+z=34+30=64xyz=2450 明显2450不是3的倍数,所以年龄当中不应该有3的倍数存在,排除A、B。如果C正确,即最大年龄x49,那么(注意yz):y+z=64-49=15yz=245049=50 y=10z=5 明显满足条件,所以选择C。点睛 代入法进行求解时,只要有一个答案完全满足条件,那么就肯定是正确答案而不再需要去代入其他选项。事实上,如果将D代入,将得到两个相等的根:y=z=7,与条件相悖。【例13】 请问1000!(1000的阶乘)末尾一共有多少个连续的“0”?()A. 200B. 240C. 249D. 500答案 C解析 1000!末尾一共有多少个连续的“0”,取决于1000!一共有多少个因子10。而1025,1000!当中2因子肯定会比因子5要多,那么1000!里有多少个因子5就决定了其末尾有多少个连续的“0”。我们知道,1000!是从11000这1000个数相乘,我们来分情况讨论:10006251375,说明11000里有1个62554的倍数;10001258,说明11000里有8个12553的倍数;10002540,说明11000里有40个2552的倍数;10005200,说明11000里有200个551的倍数。以上这些数的因子5统统加起来就是答案,在计算的时候注意重复的情形(前种情形都是包含在后种情形当中),那么总共的因子5应该有:41+3(8-1)+2(40-8)+1(200-40)249。点睛 本题可以直接这样计算:10005+100025+1000125+1000625=200+40+8+1=249。 题型三:比例倍数核心提示若ab=mn(m,n互质),则说明a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。题型三:比例倍数【例1】哥哥和弟弟各有若干本书,如果哥哥给弟弟4本,两人的书一样多,如果弟弟给哥哥2本,哥哥的书是弟弟的4倍,哥哥和弟弟一共有(A)本书。A.20 B.9 C17 D.28【解析】如果弟弟给哥哥2本,哥哥的书是弟弟的4倍,此时如果弟弟是1份,那么哥哥是4份,两人总和是5份,所以答案是5的倍数。【例20】 (江苏2010C-33)某城市有A、B、C、D四个区,B、C、D三区的面积之和是A的14倍,A、C、D三区的面积之和是B的9倍,A、B、D三区的面积之和是C区的2倍,则A、B、C三区的面积之和是D区的()。A. 1倍B. 1.5倍C. 2倍D. 3倍答案 A解析 如果A占1份,那么B、C、D占14份,说明A占全城的115;如果B占1份,那么A、C、D占9份,说明B占全城的110;如果C占1份,那么A、B、D占2份,说明C占全城的13。综上,D占全城的1-115-110-13=12,说明A、B、C面积之和是D的1倍。【例21】 (国家2009-117)甲、乙、丙、丁四个队共同植树造林,甲队造林的亩数是另外三个队造林总亩数的14,乙队造林的亩数是另外三个队造林总亩数的13,丙队造林的亩数是另外三个队造林总亩数的一半。已知丁队共造林3900亩,问甲队共造林多少亩?()A. 9000B. 3600C. 6000D. 4500答案 B解析 根据比例关系,甲、乙、丙分别占总数的15、14、13,如果假定总数为60份,甲、乙、丙分别为12、15、20份,丁还剩13份(3900亩),每份390013=300(亩),那么甲有12300=3600(亩)。点睛 当算得丁为13份时,可以判断甲12份比丁要少,即少于3900亩,直接选B。第三节 综合特性法一、主要特性大小特性、奇偶特性、尾数特性、余数特性、幂次特性、质数特性等。二、例题精析题型一:大小特性【例1】某成衣厂对9名缝纫工进行技术评比,9名工人的得分恰好成等差数列,9人的平均得分是86分,前5名工人的得分之和是460分,那么前7名工人的得分之和是多少?( B)A.602 B.623 C.627 D.631【解析】(等差数列的平均数等于其中中位数的值)根据“9名工人得分恰好形成等差数列”可知,第三名工人得分为4605=92分,第5名工人得分为86分,则第四名工人得分为(92+86)2=89分,所以前7名工人得分和为897=623分。题型二:奇偶特性【例1】有一个整数,用它分别去除157、234和324,得到的三个余数之和是100。则这个整数为( )A.44 B.43 C.42 D.41解析本题可采用代入排除法。如果该整数是偶数的话,三个余数应该分别是奇数、偶数、偶数,和不可能得到100,因此该整数一定是奇数,排除A、C。然后分别将B、D项代入,经验算可知41符合条件。所以选择D选项。【例2】有8个盒子分别装有17个,24个,29个,33个,35个,36个,38个和44个乒乓球,小赵取走一盒,其余各盒被小钱,小孙,小李取走,已知小钱和小孙取走的乒乓球个数相同,并且是小李取走的两倍,则小钱取走的各个盒子中的乒乓球最可能是(D)A17个,44个B24个,38个C24个,29个,36个D24个,29个,35个【解析】小钱的数量是小李的2倍,那么小钱的量必然为偶数,排除A,C。小钱,小李,小孙这三个人的总数应该是小钱数量的25倍,如果是B,则这三个人的数量和为155,太少,只能选择D题型三:尾数特性【例1】小李到商店买了一个书包和一个羽毛球拍,在付钱时,他漏看了羽毛球拍价位个位上的“0”,准备付158元。售货员说:“您看错了单价,应该付410元才对。”那么一个书包的单价是多少元(B)A.158 B.130 C.98 D.88【解析】羽毛球拍的单价尾数是0,而总价尾数也是0,可知书包单价尾数一定是0.【例2】面包店促销,面包一律打8折,晚上8点后再打8折,小明晚上8点半买面包,付了30.72元这些面包的原价(C)A.85元 B.40元 C.48元 D.50元【解析】设原价为A,A0.80.8=30.7264A=3072,只有48代入满足尾数特性。题型四:余数特性【例1】某单位组织职工参加团体操表演,表演的前半段队形为中间一组5人,其他人按8人一组围在外圈;后半段队形变为中间一组8人,其他人按5人一组围在外圈。该单位职工人数150人,则最多可有多少人参加? A149 B148 C138 D133【解析】解析根据题意,参加人数减去5是8的倍数,减去8是5的倍数,只有D满足。点睛本题实质上是要求答案除以8余5,除以5余8(实际上余3)【例2】把1张纸剪成8块,从所得纸片中取出若干块,每块各剪成8块;再从所得纸片中取出若干块,每块各剪成8块如此下去,剪完某1次后停止,共得纸片总数可能是(C)A2008 B2009 C2010 D 2011【解析】每次把1张纸剪成8块时,都是增加了7块,所以无论剪了多少次,都是增加7的倍数。最开始时1块,增加了7的倍数,说明最后的结果除以7余1,只能选C。(每块剪成8块,总数就增加7块,原来有8块,所以总数应该是:4n+8(n=0,1,2,3),所以只有C项满足)【例3】 某店一共进货6桶油,分别为15,16,18,19,20,31千克,上午卖出2桶,下午卖出3桶,下午卖出的重量正好是上午的2倍。那么,剩下的一桶油重多少千克?A 15B16 C18D20【解析】上午加下午卖出的能被3整除,15,16,18,19,20,31相加除以3余2,所以剩下没卖出的那桶除以3也应该余2,即剩下的那桶为20题型五:幂次特性【例1】一个正方形队列,如减少一行和一列会减少19人,原队列有几个人(B)A 81B100 C121D144【解析1】 原队列减少19人之后,还应该是一个平方数,只有b 满足。【解析2】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专项培训合同(标准版)
- 新版GSP培训题库及考试解析2023
- 智能供应链优化路径探析-洞察及研究
- 白酒灌装基础知识培训
- 小型绿化工程养护合同
- 白菜育种课件
- 跨境物流成本优化研究-洞察及研究
- 供应链战略合作伙伴管理模式研究
- 八年级语文复习资料与模拟试题
- 汽油依赖症社交网络分析-洞察及研究
- 外贸销售政策知识培训课件
- 2025江苏连云港赣榆区招聘社区工作者88人考试参考题库附答案解析
- 技术经纪人基本知识培训课件
- 研发项目管理流程及质量控制措施
- 2025年北交所开通测试题及答案
- 2025年国家安全知识竞赛题库试题(附答案)
- 2025年法人试题及答案
- 水稻全程机械化栽培技术
- 皮内针讲课课件
- 新水浒q传乡试会试测验题目
- 地基承载力计算
评论
0/150
提交评论