【温馨提示】 购买原稿文件请充值后自助下载。
[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。
预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。
有疑问可以咨询QQ:414951605或1304139763
摘要
本设计首先确定各主要部件的结构型式和主要设计参数,然后参考同类的驱动桥结构,确定出设计方案并进行计算和设计,最后对主从动锥齿轮、半轴齿轮、半轴、桥壳轮边机构等部分进行校核,对支撑轴承进行了寿命校核。
本设计采用主减速器和轮边减速器双级传动副传动,均匀分配单一传动副上的高强度磨损,轮边机构的应用,大大的提高了离地间隙,提高了汽车的通过性。本设计在我国尚处于起步阶段,在我国仍有很大的发展潜力和发展空间,本设计也将是未来越野汽车和重载汽车的发展方向。
本设计具有以下的优点:由于采用轮边双级驱动桥,使得整个后桥的结构简单,制造工艺简单,从而大大的降低了制造成本。并且,提高了汽车的离地间隙。
关键字:越野汽车;后桥;轮边双级;圆弧齿锥齿轮
Abstract
This design is to first identify major parts of the structure and main design parameters, then reference to similar axles structure, confirmed the design and calculation and design, final master-slave dynamic bevel gear and half axle gears, half axle, bridge housing wheel edges institutions, to test the part such as back-up bearing life respectively. This design USES the main reducer and wheel edges reducer doublestage transmission vice transmission, evenly distributed single transmission of high intensity vice wear, wheel edges institutions of applications, greatly improve the ground clearance is achieved, improved the car through sexual.
This design in our country is still at the beginning, in our country still has great potential for growth and development space, this design also will be the future off-road vehicle and heavy-load automobiledevelopment direction.
This design has the following advantages: due to the wheel edges doublestage axles, make the whole bridge structure is simple, make simple process, thus greatly reduce the production cost. And, improve the car from the ground clearance.
Key word: off-road vehicle, Rear axle, Wheel edges doublestage; Arc tooth wimble gear
目 录
摘要 I
Abstract II
目 录 III
第1章 绪论 1
第2章 驱动桥总体结构方案分析 2
第3章 主减速器设计 4
3.1 主减速器的结构型式 4
3.1.1 主减速器齿轮的类型 4
3.1.2 主减速器主、从动锥齿的支承型式 4
3.2 主减速器的基本参数与设计计算 5
3.2.1 主减速比的确定 5
3.2.2 主减速器齿轮计算载荷的确定 5
3.2.3 主减速器齿轮基本参数的选择 6
3.2.4 主减速器圆孤齿轮的几何参数计算 7
3.2.5 主减速器圆弧锥齿轮的强度计算 10
3.3 主减速器的材料选择及热处理方法 12
3.4 主减速器轴承的计算 12
3.4.1 锥齿轮齿面上的作用力 12
3.4.2 主减速器轴承载荷的计算 15
小结 18
第4章 差速器设计 19
4.1 差速器类型的选择 19
4.2 差速器的设计和计算 19
4.2.1 差速器齿轮的基本参数选择 19
4.2.2 差速器齿轮的几何尺寸计算 21
4.2.3 差速器齿轮的强度校核 23
4.3 差速器齿轮的材料选择 24
4.4 差速器壳体的材料选择 24
小结 24
第5章 驱动车轮的传动装置设计 25
5.1 半轴的形式 25
5.2 半轴的设计计算 25
5.2.1 全浮式半轴的计算载荷确定 25
5.2.2 全浮式半轴杆部直径初选 26
5.2.3 半轴的强度计算 26
5.2.4 半轴花键的强度计算 27
5.3 半轴材料与热处理 28
小结 28
第6章 轮边部分的设计 29
6.1 轮边减速器的结构型式 29
6.1.1 轮边减速器的齿轮类型 29
6.1.2 轮边减速器主、从动锥齿轮的支撑方式 29
6.2 轮边减速器的基本参数与设计计算 29
6.2.1 圆柱直齿轮主要参数的选择 29
6.2.2 轮边减速器圆柱直齿轮的几何参考数计算 30
6.2.3 轮边减速器圆柱齿轮的强度计算 31
6.3 轮边减速器齿轮材料的选择及热处理方法 34
6.4 轮边减速器壳的材料选择 34
6.5 轮边减速器圆柱轴承的计算 34
6.5.1 圆柱齿轮齿面上的作用力 34
6.5.2 轮边减速器轴承载荷的计算 36
小结 38
第7章 驱动桥壳设计 39
7.1 桥壳的结构型式 39
7.2 桥壳的受力分析与强度计算 39
7.2.1 桥壳的静弯曲应力计算 39
7.2.2 在不平路面冲击载荷作用下的桥壳强度计算 40
7.2.3 汽车以最大牵引力行驶时的桥壳强度计算 41
7.2.4 汽车紧急制动时的桥壳强度计算 43
7.2.5 汽车受最大侧向力时的桥壳强度计算 43
7.3 桥壳的材料选择 44
小结 44
结论 45
致谢 46
参考文献 47
附录 48



