齐大化工原理课程设计-水吸收丙酮填料吸收塔设计_第1页
齐大化工原理课程设计-水吸收丙酮填料吸收塔设计_第2页
齐大化工原理课程设计-水吸收丙酮填料吸收塔设计_第3页
齐大化工原理课程设计-水吸收丙酮填料吸收塔设计_第4页
齐大化工原理课程设计-水吸收丙酮填料吸收塔设计_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

齐 齐 哈 尔 大 学化工原理课程设计题 目 水吸收丙酮填料吸收塔设计 学 院 化学与化学工程学院 专业班级 制药工程学生姓名 指导教师 成 绩 年 月 日 齐齐哈尔大学化工原理课程设计摘 要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。在化工生产中主要用于原料气的净化,有用组分的回收等。填料塔是气液呈连续性接触的气液传质设备。塔的底部有支撑板用来支撑填料,并允许气液通过。支撑板上的填料有整砌和乱堆两种方式。填料层的上方有液体分布装置,从而使液体均匀喷洒于填料层上。本次化工原理课程设计的目的是根据设计要求采用填料吸收塔的方法处理含有丙酮的混合物,使其达到排放标准。在设计中,主要以水吸收混合气中的丙酮,在给定的操作条件下对填料吸收塔进行物料衡算。本次设计包括设计方案的选取,主要设备的工艺设计计算物料衡算、设备的结构设计和工艺尺寸的设计计算,工艺流程图,主要设备的工艺条件图等内容。关键词:水;填料塔;吸收;丙酮;低浓度- -AbstractAbsorption is the unit operation Of using mixed gas in the liquid component in the solubility of isolated differences to a gaseous mixture of homogeneous . In the production ,it is being used in producing of chemical raw materials, gas purification and recycling of useful components and so on. The absorption chamber was mad that the fluid assumes the continuous contact the gas fluid mass transfer equipment. On base plates padding has entire builds with the chaotic pile of two ways. The padding levels place above has the liquid to distribute the installment, thus causes the liquid to spray evenly on the padding level. The chemical principle curriculum projects goal is to use the padding absorption tower according to the design requirements method processing to include the acetone mixture. In the design, mainly by the water absorption mixture airs in acetone, under the operating condition which assigns to the padding absorption tower carries on the material balance. This design including design proposal selection, major installations technological design , equipments structural design and craft size design calculation, flow chart, major installations contents and so on technological conditions chart. Key words:Water;Absorption chamber;Absorption;Acetone;Low concentration- -目 录摘 要IAbstractII第1章 绪论11.1 吸收技术概况11.2 吸收设备的发展21.3 吸收在工业生产中的应用41.3.1 吸收的应用41.3.2 塔设备在化工生产中的作用和地位51.3.3 化工生产对塔设备的要求5第2章 设计方案72.1 吸收剂的选择72.2 吸收工艺流程确定82.3 吸收塔设备及填料选择92.3.1 吸收塔的设备选择92.3.2 填料的选择102.4 操作参数的选择112.4.1 操作温度的选择112.4.2 操作压力的选择11第3章 吸收塔的工艺计算123.1 基础物性数据123.1.1 液相物性数据123.1.2 气相物性数据123.1.3 气液相平衡数据123.1.4 物料衡算133.2 填料塔的工艺尺寸的计算143.2.1 塔径的计算143.2.2 泛点率校核153.2.3 填料规格核算153.2.4 液体喷淋密度校核153.3 填料塔填料高度计算163.3.1 传质单元高度计算16- -3.3.2 传质单元数的计算183.3.3 填料层高度的计算183.3.4 填料塔附属高度计算193.4 填料层压降计算193.4.1 填料层压降193.4.2 气体进出管压降213.4.3 其他塔内件压降及总压降213.5 进出管工艺尺寸计算213.5.1 液体进出料管223.5.2 气体进出料管223.6 液体分布器223.7 其他附属塔内件的选择233.7.1 填料支承板的选择233.7.2 除沫器的选择23工艺设计计算结果汇总24设计总结25参考文献26致 谢27- -第1章 绪论1.1 吸收技术概况在化工生产中,经常要处理各种原料、中间产物、粗产品。这些物料几乎都是混合物,而且大部分都是均相物系,往往不能满足生产要求,需要把它们分离成较为纯净的物质1。为了实现这种分离,常利用均相物系中不同组分的某种性质差异,使其中的一种组分(或几种组分),在分离设备所提供的两相物系界面上,通过充分的接触,从一相转移到另一相,其它组分仍保留在原物系中,从而实现了分离2。这种分离是物质在相际间的转移过程,即物质传递过程,也是化工生产中的单元操作。吸收就是这种以物质分离为目的的单元操作。吸收是用来分离气体混合物的,是利用混合气体中各组分在吸收剂中的溶解度的差异而实现分离的操作。在吸收过程中,混合气体与合适的液体吸收剂在吸收设备中充分接触,气体中易溶解的组分被溶解,不能溶解的组分仍保留在气相中,这样混合气体就实现了分离3。吸收作为一种重要的物质分离操作被广泛地应用在化工、石化等工业生产过程中。通过吸收可以回收混合气体中的有用组分,例如用液态烃吸收石油裂解气中的乙烯和丙烯,用洗油吸收焦炉煤气中的芳烃物质,用硫酸处理焦炉气以回收其中的氨等;还可以通过吸收除去混合气体中的有害组分使其净化,例如用水或碱液除去合成氨原料气中的二氧化碳,用丙酮除去石油裂解气中的乙炔,以及除去工业废气中的二氧化硫、硫化氢等有害物质。有时还通过吸收来直接生产化工产品,例如用水吸收二氧化氮以制取硝酸,用水吸收氯化氢以制取盐酸,用水吸收甲醛以制取福尔马林溶液等4。吸收剂将混合气体中溶质组分吸收后所得到的溶液是混合溶液,在生产中常需要使溶质从吸收后的溶液中重新释放出来,实现最终分离,而液相的吸收剂有可得以再生重新使用。这种使溶质组分从溶液中脱出的过程称为解吸,是吸收的逆过程,也是一种通过相际间传质而实现物质分离的单元操作。在化工生产中,吸收和解吸是常用的联合操作,共同构成了一个完整的工艺流程5。可用于吸收操作的设备种类很多,如填料塔、板式塔、喷洒塔等,工业上较多的使用填料塔。适用于吸收操作的设备同样也适用于解吸操作。目前,解吸设备也多用填料塔。填料塔的结构简单,压降低,填料易用耐腐蚀材料制造,尤其近年来国内外对填料的研究与开发技术较快,一些性能优良的新型填料不断涌现,对大型填料的理论与应用研究也不断深入。所以,填料塔的应用前景也将更加广阔。1.2 吸收设备的发展1813年Celler提出泡罩塔,1832年开始用于酿造工业。1881年工业规模的填料塔开始用于蒸馏操作,当时的填料是碎砖瓦、小石块和管子短节等。二十世纪初期,随着炼油工业的发展和石油化学工业的兴起,塔设备被广泛使用。当时炼油工业多采用泡罩塔,无机工业以填料塔为主。二十世纪中期,为了适应各种化工产品的生产,开发了一些新型塔盘,如条形泡罩塔盘、S形塔盘、筛板塔盘、浮阀塔盘、舌形塔盘等。这一时期填料塔也在瓷环填料被广泛采用的基础上开发了鲍尔环填料、狄克松环填料、麦克马洪填料、矩鞍形填料等。从六十年代起,随着化学及炼油工业的大型发展,塔设备的单塔规模也随之增大。直径在10米以上的板式塔已经出现,塔板数多达上百块,塔的高度达80余米,重量达几百吨;填料听的最大直径已达15米,高达100米6。目前,我国常用的板式塔仍为泡罩塔、筛板塔、浮阀塔和舌形塔盘塔。近年来,开发使用了斜孔塔盘、导向筛板、网孔塔盘、大孔筛板、浮阀-筛板复合塔盘以及浮动喷射塔板、旋流塔板等7。填料塔所用填料,对于乱堆填料除拉西环、鲍尔环外,阶梯环、金属矩鞍环已大量采用,由于金属丝网及金属板波纹填料规整填料的使用,并配合新型塔内件结构使填料塔的效率大为提高,因此应用范围日益扩大。自从1914年出现拉西环填料以后,填料塔的发展进入了科学的轨道8。1914年瓷质拉西环的问世,标志着填料塔进入了科学发展的年代。1914年第一代有规填料拉西环(Raschingring)的出现,使填料塔的发展进人了科学轨道。1914年Rachig环问世,标志着第一代乱堆填料的诞生,但实际生产效果仍没有很大的提高,人们开始意识到汽液分布性能对填料塔操作的重要性。1937年斯特曼填料的出现,使填料和填料塔又进入了现代发展时期。 1950年后,填料塔进入了缓慢发展时期,在这个时期内,人们注意了对塔内件的研究,力图解决填料塔的放大问题,但由于各种板式塔的出现及其成功应用,使填料塔倍受冷落。1950年 以后,填料塔进入了缓慢发展时期,在这个时期内,人们注意了塔内件的研究,力图解决填料塔的放大问题,但由于各种板式塔的出现极其成功应用,使填料 塔受到了冷落9。 在1951年Danckwerts侧针对渗透理论假定旋涡在界面上停留一个固定的时间的不合理性,特别对搅拌槽、乱堆填料塔、鼓泡塔、喷雾塔,其中的气泡和液滴有较宽的尺度分布,对渗透理论进行改进,提出了表面更新理论。 1966年,用于分离水和重水的第一个苏尔采填料塔在法国投产。自1966年世界上建立起莽一批网波填料塔以来,十多年的实践证明,风波填料具有效率高、负荷大、压降低、滞液星小、几乎无放大效应以及易于机械化加工等优点,因此其应用得到了迅速发展。 1969年,Viviantl将一个填料塔固定在大离心机的旋转臂上,首次测定了离心加速度对传质效率的 影响。 1970年,我国建成第一座金属丝网波纹填料塔,20多年来估计有数百座金属丝网波纹填料塔投人生产。 1971年Spaay等采用不同材质、不同尺寸的拉西环较为详尽地研究了脉冲填料塔的两相流动、轴向混合和传质特性,给出了特性速度、液滴直径的经验关联式。 到1972年苏尔采公司已建造了12个CY堑填料塔,并且已成功地运转着。1972年以来,以欧美为中心的世界硫酸制造所用的填料塔逐渐改换成陶瓷阶梯环,目前包括新建在内其总数可达100座。 1977年Simonsl吩绍了脉冲填料塔在己内酚胺生产中的应用,并提出脉冲填料塔的传质效率与塔径和塔中是否存在反应无关,因而具有易于放大的优点。 1980年5月开始进行了阶梯环填料塔的试验,获得成功。1980年,Merchuk川曾将填料塔作为氧合器,对几种较小尺寸的填料进行了传质性能的测定,并进行了血液氧合过程的尝试川。1982年4月在直径5.3米的油洗塔及直径5.1米的水洗塔中,将上段的浮阀塔板改为充填英塔洛克斯金属填料的填料塔12。1986年底大检修时,对部分设备进行了改造,用填料塔取代了浮阀塔。1990年国家科委批准在天津大学成立“新型填料塔及高效填料研究推广中心”。2001年杭氧、开空、川空和中国空分设备公司等主要企业以填料塔、全精馏制氩、内压缩流程为代表的新一代大型空分设备占据了国内2万m3h以下空分设备市场,生产任务也都十分饱满。 吸收塔是实现吸收操作的设备。按气液相接触形态分为三类。第一类是气体以气泡形态分散在液相中的板式塔、鼓泡吸收塔、搅拌鼓泡吸收塔;第二类是液体以液滴状分散在气相中的喷射器、文氏管、喷雾塔;第三类为液体以膜状运动与气相进行接触的填料吸收塔和降膜吸收塔10。塔内气液两相的流动方式可以逆流也可并流。通常采用逆流操作,吸收剂以塔顶加入自上而下流动,与从下向上流动的气体接触,吸收了吸收质的液体从塔底排出,净化后的气体从塔顶排出。填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础13。填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300700Pa,与板式塔相比处理风量小,空塔气速通常为0512m/s,气速过大会形成液泛,喷淋密度68m3(m2,h)以保证填料润湿,液气比控制在210Lm3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。用以进行吸收操作的塔器。利用气体混合物在液体吸收剂中溶解度的不同,使易溶的组分溶于吸收剂中,并与其他组分分离的过程称为吸收14。操作时,从塔顶喷淋的液体吸收剂与由塔底上升的气体混合物在塔中各层填料或塔盘上密切接触,以便进行吸收。伴有化学反应的吸收叫化学吸收。按吸收时气液作用方式吸收塔可分为表面式、膜式、喷淋式和鼓泡式等。1.3 吸收在工业生产中的应用1.3.1 吸收的应用吸收在工业生产中得到广泛应用,大致分为以下几种:原料气的净化为除去原料气所含的杂质,吸收可以说是最常用的方法。就杂质的浓度来说,多数很低,但因危害大而仍要求很高的净化率,如煤气中的H2S含量一般远低于1%(体积分数),但净化率仍要求高于90%;也有初始浓度相当高的。有用组份的回收,如从焦炉煤气中用水回收氨,再用洗油回收粗苯蒸汽,以及从某些干燥废气中回收有机溶剂蒸汽等。某些产品的制取,将气体中需用的成分以指定的溶剂吸收出来,成分溶液态的产品或半成品。如甲醇(乙醇)蒸汽经氧化后,用水吸收以制成甲醛(乙醛)半成品等15。废弃的治理,很多工业废气中含有SO2、NOx(主要是NO及NO2)、汞蒸汽等有害气体成分,虽然浓度一般很低,但对人体和环境仍危害甚大而必须进行处理。这类环境保护问题在我国已愈来愈受到重视。选择适当的工艺和溶剂进行吸收,是废气治理中应用较广的方法。当然,以上目的有时也难以截然分开,如干燥废气中的有机溶剂,能回收下来就很有价值,任其排放则会污染大气。1.3.2 塔设备在化工生产中的作用和地位塔设备是化学工业、石油工业、石油化工等生产中最重要的设备之一。在塔设备中能进行的单元操作有:精馏、吸收、解吸、气体的增浓及冷却等。在化工、石油化工及炼油厂中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大影响。在化工和石油化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.39%,炼油和煤化工生产装置占34.85%。它所耗用的钢材重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压及减压炼油蒸馏装置中耗用的钢材重量占62.4%,年产60及120万吨的催化裂化装置占48.9%。因此,塔设备的设计和研究,对化工、炼油等工业的发展起着重大作用。吸收设备有多种形式,但以塔式最为常见。按气、液两相接触方式的不同可将吸收设备分为级式接触和微分接触两大类。在级式接触设备中,气体与液体逐级逆流接触。气体自下而上通过板上小孔,在每一板上与溶剂接触,其中可溶组分被部分的溶解。气体每上升一块塔板,其可溶组分的浓度阶越式的降低;溶剂逐板下降,其可溶组分的浓度则阶越式的升高。但是,在级式接触过程中所进行的吸收过程仍可不随时间而变,为定态连续过程。在微分接触设备中,液体自塔顶均匀流下,气体通过填料间的空隙上升与液体做连续接触,气体中的可溶组分不断的被吸收,其浓度自下而上连续的降低;液体则相反,其中可溶组分的浓度则有上而下连续的增高。级式接触与微分接触两类设备不仅用于气体吸收,同样也用于液体精馏、萃取等其它传单元操作。化工生产中吸收主要用于回收或捕获气体混合物中的有用物质,以制取产品;还用于出去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染空气。实际过程往往同时兼有净化和回收的双重目的。1.3.3 化工生产对塔设备的要求吸收操作是气液两相之间的接触传质过程,吸收操作的成功与否在很大程度上决定于溶剂的性质,特别是溶剂与气体混合物之间的相平衡关系。塔设备除了应满足特定的化工工艺条件(如温度、压力及耐腐蚀)外,为了满足工业生产的需要还应达到下列要求:(1)生产能力大,即气液处理量大;(2)高的传质和传热效率,即气液有充分的接触空间、接触时间和接触面积;(3)操作稳定,操作弹性大,即气液负荷有较大波动时仍能在较高的传质效率下进行稳定的操作,且塔设备应能长期连续运转;(4)流体流动的阻力小,即流体通过听设备的压力降小,以达到节能降低操作费用的要求;(5)结构简单可靠,材料耗用量小,制造安装容易,以达到降低设备投资的要求。事实上,任何一个塔设备能同时达到上述的诸项要求是很困难的,因此只能从生产需要及经济合理的要求出发,抓住主要矛盾进行设计。随着人们对于增大生产能力、提高效率、稳定操作和降低压力降的追求,推动着各种新型塔结构的出现和发展16。对填料的基本要求有:传质效率高,要求填料能提供大的气液接触面。即要求具有大的比表面积,并要求填料表面易于被液体润湿。只有润湿的表面才是气液接触表面。生产能力大,气体压力降小。因此要求填料层的空隙率大。不移引起偏流和沟流。经久耐用具有良好的耐腐蚀性,较高的机械强度和必要的耐热性。取材容易,价格便宜。第2章 设计方案吸收过程的设计方案主要包括吸收剂的选择、吸收流程的选择、解吸方法选择、设备类型选择、操作参数的选择等内容。2.1 吸收剂的选择在填料吸收塔的设计中,选择合适的吸收剂,对物系的有效分离、流程的确定、溶剂的用量或循环量、设备的尺寸大小等都有至关重要的影响,也直接决定了分离操作的经济效益。对吸收剂的选择,一般遵循以下原则:(一)对溶质的溶解度大选用溶解度大的溶剂,可大大降低溶剂用量,溶剂的循环量和再生处理量都随之减小,这意味着日常操作费用的降低。在吸收剂同样用量的情况下,完成一定的分离任务,选用溶解度大的溶剂,则可减小吸收设备的尺寸,从而降低设备费用。(二)对溶质有较高的吸收选择性对溶质有较高的选择性,即吸收剂应对溶质有较大的溶解度,而对其他组分则溶解度要小,这样不但可以减小惰性气体组分的损失,还可以提高解吸后溶质气体的纯度。(三)不易挥发吸收剂在操作条件下应具有较低的蒸气压,避免吸收过程中吸收剂的损失,提高吸收过程的经济性。(四)再生性能好由于在吸收剂再生过程中,一般要对其进行升温或气提等处理,能量消耗较大,因而,吸收剂再生性能的好坏,对吸收过程能耗的影响极大,选用具有良好再生性能的吸收剂,往往能有效地降低过程的能量消耗。以上四个方面是选择吸收剂时应考虑的主要问题,其次,还应注意所选择的吸收剂应具有良好的物理、化学性能和经济性.其良好的物理性能主要指吸收剂的粘要小,不易发泡,以保证吸收剂具有良好的流动性能和分布性能.良好的化学性能主要指其具有良好的化学稳定性和热稳定性,以防止在使用中发生变质,同时要求吸收剂尽可能无毒、无易燃易爆性,对相关设备无腐蚀性(或较小的腐蚀性).吸收剂的经济性主要指应尽可能选用廉价易得的溶剂。表2-1 物理吸收剂与化学吸收剂的特征物理吸收剂化学吸收剂(1)吸收容量(溶解度)正比于溶质分压(2)吸收热效应很小(近于等温)(3)常用降压闪蒸解吸(4)适于溶质含量高,而净化度要求不太高的场合(5)对设备腐蚀性小,不易变质(1)吸收容量对溶质分压不太敏感(2)吸收热效应显著(3)用低压蒸汽气提解吸(4)适于溶质含量不高,而净化度要求很高的场合(5)对设备腐蚀性大,易变质2.2 吸收工艺流程确定工业上使用的吸收流程多种多样,可以从不同角度进行分类,从所选用的吸收剂的种类看,有仅用一种吸收剂的一步吸收流程和使用两种吸收剂的两步吸收流程,从所用的塔设备数量看,可分为单塔吸收流程和多塔吸收流程,从塔内气液两相的流向可分为逆流吸收流程、并流吸收流程等基本流程,此外,还有用于特定条件下的部分溶剂循环流程。(一)一步吸收流程和两步吸收流程一步流程一般用于混合气体溶质浓度较低,同时过程的分离要求不高,选用一种吸收剂即可完成任务的情况。若混合气体中溶质浓度较高且吸收要求也高,难以用一步吸收达到规定的吸收要求,但过程的操作费用较高,从经济性的角度分析不够适宜时,可以考虑采用两步吸收流程。(二)单塔吸收流程和多塔吸收流程单塔吸收流程是吸收过程中最常用的流程,如过程无特别需要,则一般采用单塔吸收流程。若过程的分离要求较高,使用单塔操作时,所需要的塔体过高,或采用两步吸收流程时,则需要采用多塔流程(通常是双塔吸收流程)。(三)逆流吸收与并流吸收吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高(具有多个理论级的分离能力)的显著优点而 广泛应用。工程上,如无特别需要,一般均采用逆流吸收流程。(四)部分溶剂循环吸收流程由于填料塔的分离效率受填料层上的液体喷淋量影响较大,当液相喷淋量过小时,将降低填料塔的分离效率,因此当塔的液相负荷过小而难以充分润湿填料表面时,可以采用部分溶剂循环吸收流程,以提高液相喷淋量,改善踏的操作条件。2.3 吸收塔设备及填料选择2.3.1 吸收塔的设备选择按气液两相接触的方式不同可将吸收设备分为级式接触设备与微分接触设备两大类。板式吸收塔是典型的级式接触设备,气体与液体逐级逆流接触。气体自下而上通过板上小孔逐板上升,在每一板上与溶剂接触,其中可溶组分被部分地溶解。在此类设备中,气体每上升一块板,其可溶组分的浓度阶越式地降低;溶剂逐板下降, 其可溶组分的浓度阶越式地升高。但是,在级式接触过程中所进行的吸收过程仍可不随时间而变,为定态连续过程。填料吸收塔是常用的微分接触设备。液体呈膜状沿壁流下,此为壁塔或降膜塔。更常见的是在塔内充以诸如瓷环之类的填料,液体自塔顶均匀淋下并沿填料表面下流,气体通过填料间的空隙上升与液体做连续的逆流接触。在这类设备中,气体中的可溶组分不断地被吸收,其浓度自下而上连续地降低;液体则相反, 其可溶组分的浓度则由上而下连续地增高。对于吸收过程,能够完成其分离任务的塔设备有多种,如何从众多的塔设备中选出合适的类型是进行工艺设计的首要工作.而进行这一项工作则需对吸收过程进行充分的研究后,并经多方案对比方能得到较满意的结果.一般而言,吸收用塔设备与精馏过程所需要的塔设备具有相同的原则要求,即用较小直径的塔设备完成规定的处理量,塔板或填料层阻力要小,具有良好的传质性能,具有合适的操作弹性,结构简单,造价低,易于制造、安装、操作和维修等。但作为吸收过程,一般具有操作液起比大的特点,因而更适用于填料塔.此外,填料塔阻力小,效率高,有利于过程节能,所以对于吸收过程来说,以采用填料塔居多.但在液体流率很低难以充分润湿填料,或塔径过大,使用填料塔不经济的情况下,以采用板式塔为宜。2.3.2 填料的选择填料的选择包括确定填料的种类、尺寸及材质等.所选填料既要满足生产工艺的要求,又要使设备投资和操作费用较低.并且各种填料的结构差异较大,具有不同的优缺点,因此在使用上应根据具体情况选择不同的塔填料。在选择塔填料时,应该考虑如下几个问题:1.填料种类的选择:填料种类的选择要考虑分离工艺的要求,还要确保有较高的传质效率.除此之外,还应选择具有较高泛点气速或气相动能因子的填料,这样可以使通量增大,塔的处理能力也增大.填料层压降是填料的主要应用性能,填料层的压降愈低,动力消耗就愈低,操作费用愈小.填料的操作性能主要指操作弹性、抗污堵性及抗热敏性等.所选填料应具有较大的操作弹性,以保证塔内气液负荷发生波动时维持操作稳定.同时还应具有一定的抗污堵、抗热敏能力,以适应物料的变化及塔内温度的变化。2.填料尺寸的选择:实践表明,填料塔的塔径与填料直径的比值应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。一般来说,填料尺寸大,成本低,处理量大,但是效率低,使用大于50mm的填料,其成本的降低往往难以抵偿其效率降低所造成的成本增加。所以,一般大塔经常使用50mm的填料。表2-2 填料尺寸与塔径的对应关系塔径/mm填料尺寸/mmD300300D900D9002025253850803.填料材质的选择选择填料材质应根据吸收系统的介质以及操作温度而定,一般情况下,可以选用塑料,金属,陶瓷等材料。对于腐蚀性介质应采用相应的抗腐蚀性材料,如陶瓷,塑料,玻璃,石墨,不锈钢等,对于温度较高的情况,应考虑材料的耐温性能。综合考虑以上各个因素,本设计中选用DN38聚丙烯塑料阶梯环填料,有关特性数据如下表:表2-3 聚丙烯塑料阶梯环填料特性数据公称直径 mm外径高厚mm比表面积 m2/m3空隙率 %个数m-3堆积密度kg/m3干填料因子 m-13838191.0132.5912720057.51752.4 操作参数的选择2.4.1 操作温度的选择对于物理吸收而言,降低操作温度,对吸收有利.但低于环境温度的操作温度因其要消耗大量的制冷动力而一般是不可取的,所以一般情况下,取常温吸收较为有利.对于特殊条件的吸收操作必须采用低于环境的温度操作。对于化学吸收,操作温度应根据化学反应的性质而定,既要考虑温度对化学反应速度常数的影响,也要考虑对化学平衡的影响,使吸收反应具有适宜的反应速度。对于再生操作,较高的操作温度可以降低溶质的溶解度,因而有利于吸收剂的再生。2.4.2 操作压力的选择对于物理吸收,加压操作一方面有利于提高吸收过程的传质推动力而提高过程的传质速率,另一方面,也可以减小气体的体积流率,减小吸收塔径.所以操作十分有利.但工程上,专门为吸收操作而为气体加压,从过程的经济性角度看是不合理的,因而若在前一道工序的压力参数下可以进行吸收操作的情况下,一般是以前道工序的压力作为吸收单元的操作压力。对于化学吸收,若过程由质量传递过程控制,则提高操作压力有利,若为化学反应过程控制,则操作压力对过程的影响不大,可以完全根据前后工序的压力参数确定吸收操作压力,但加大吸收压力依然可以减小气相的体积流率,对减小塔径仍然是有利的。对于减压再生(闪蒸)操作,其操作压力应以吸收剂的再生要求而定,逐次或一次从吸收压力减至再生操作压力,逐次闪蒸的再生效果一般要优于一次闪蒸效果。第3章 吸收塔的工艺计算3.1 基础物性数据3.1.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25时水的有关物性数据如下:密度为 kg/m3粘度为 Pas=3.217 kg/(mh)表面张力为 kg/h2查手册得25时丙酮在水中的扩散系数为 m2/s则时25丙酮在水中的扩散系数为: m2/s3.1.2 气相物性数据混合气体的平均摩尔质量为 kg/koml混合气体的平均密度为 kg/m3混合气体的粘度可近似取为空气的粘度,查手册得时空气的黏度为: kg/(mh)由手册查得, 25时丙酮在空气中的扩散系数为: m2/h3.1.3 气液相平衡数据查的有机物的亨利系数与温度的关系: (3-1)常压下25时丙酮在水中的亨利系数为: kpa相平衡常数为:溶解度系数为: kmol/(kpam3)3.1.4 物料衡算进塔气相摩尔比为:出塔气相摩尔比:进塔惰性气性流量: kmol/h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: (3-2)对于纯溶剂吸收过程,进塔液相组成为:取操作液比为: kg/h塔底吸收液组成: (3-3)3.2 填料塔的工艺尺寸的计算3.2.1 塔径的计算计算塔径关键是确定空塔气速 ,采用泛点气速法确定空塔气速. 泛点气速是填料塔操作气速的上限,填料塔的操作空塔气速必须小于泛点气速才能稳定操作.泛点气速的计算可以采用EcKert通用关联图查图计算,但结果不准确,且不能用于计算机连续计算,因此可采用贝恩-霍根公式计算: (3-4)式中 带入以上数据得: m/s取 m/s则塔径 m圆整后 mm表3-1 塑料阶梯环填料泛点填料因子平均值填料因子塑料阶梯环DN16-DN25260DN38170DN50127DN76-3.2.2 泛点率校核 m/s在50%-80%之间,所以符合要求3.2.3 填料规格核算 符合要求3.2.4 液体喷淋密度校核 对于直径大于75mm的散装填料,可取最小润湿速率(Lw)min=0.12m3/(mh) 本设计中填料塔的喷淋密度: m3/(m2h) 最小喷淋密度: m3/(m2h)说明填料能获得良好的润湿效果。经以上校核可知,填料塔直径选用D=800mm能较好地满足设计要求。3.3 填料塔填料高度计算3.3.1 传质单元高度计算传质过程的影响因素十分复杂,对于不同的物系、不同的填料及不同的流动状况与操作条件, 传质单元高度迄今为止尚无通用的计算方法和计算公式.目前,在进行设计时多选用一些准数关联式或经验公式进行计算,其中应用较普遍的是修正的恩田()公式: (3-5)查表3.2得: 表3-2 常见材质的临界表面张力值材质碳瓷玻璃聚丙烯聚氯乙烯钢石蜡表面张力, mN /m56617333407520液体质量通量: kg/(m2h) m2/m3气膜吸收系数计算如下:气体质量通量为: kg/(m2h) (3-6) (kmolm-2h-1kpa-1)液膜吸收系数由下式计算: (3-7) (kmolm-2h-1kpa-1)表3-3 常见填料塔形状系数填料类型球形棒形拉西环弧鞍开孔环值0.720.7511.191.45本设计填料类型为开孔环 所以 =1.45,则: kmol/(m3hkpa) 又因为: 所以必须对和进行校正,校正计算如下: (3-8) kmol/(m3hkpa) kmol/(m3hkpa)则气相总传质系数为: kmol/(m3hkpa)所以: m3.3.2 传质单元数的计算解析因数:气相总传质单元系数: m3.3.3 填料层高度的计算 由 m 得:设计取填料层高度为 m 可取1.2到1.5之间表3-4 散装填料分段高度推荐值填料类型h/DHmax/m拉西环2.54矩鞍586鲍尔环5106阶梯环8156环矩鞍5156查表3-4对于阶梯环填料,取 mm 因为6400mm6000mm,所以不需要分段。3.3.4 填料塔附属高度计算塔的附属空间高度主要包括塔的上部空间高度,安装液体分布器和液体再分度器所需的空间高度,塔的底部空间高度以及塔的群坐高度。塔的上部空间高度是指塔填料层以上,应有一足够的空间高度,以使随气流携带的液滴能够从气相中分离出来,该高度一般取1.2-1.5m。安装液体再分布器所需的塔空间高度依据所用分布器的形式而定一般需要1-1.5m的高度。塔的底部空间高度是指塔底最下一块塔板到塔底封头之间的垂直距离。该空间高度含釜液所占的高度及釜液面上方的气液分离高度的两部分。釜液所占空间高度的确定是依据塔的釜液流量以及釜液在塔内的停留时间确定出空间容积,然后根据该容积和塔径计算出塔釜所占的空间高度。塔底液相液相停留时间按5min考虑,则塔釜液所占空间为: m考虑到气相接管所占的空间高度,底部空间高度可取2.2米,所以塔的附属空间高度可以取4.4米。所以塔高 m3.4 填料层压降计算填料塔的的压力降为: (3-9)3.4.1 填料层压降气体通过填料层的压降采用Eckert关联图计算,其中横坐标为:查表3-5 得表3-5 塑料阶梯环散装填料压降填料因子平均值填料因子塑料阶梯环DN16-DN25176DN38116DN5089DN76- 纵坐标为:查图3.1 得,所以 pa图3.1 填料塔泛点和压降的通用关联图(引自化工原理)3.4.2 气体进出管压降取气体进出口接管的内径为220mm,则气体的进出口流速为: m/s 则进口压强为 (突然扩大 =1) pa 则出口压强为 (突然缩小 =0.5) pa3.4.3 其他塔内件压降及总压降 其他塔内件的压降较小,在此处可以忽略。 所以吸收塔的总压降为: pa3.5 进出管工艺尺寸计算气体进出口的结构,要能防止液体淹没气体通过。填料塔对其流入塔的分布要求一般不平,但也不应该是气体直接由管接口或水平管中入塔内。对于直径500mm以下的小塔,可使进气管水平伸到塔的中部。管的末端切成45o斜口(向下),或这类似的向下切口,使气流折转向上,对于直径1.1m以下的塔,管的末端可做成向下的喇叭形扩大。对于更大的塔,可以做成类似的盘关式。气体出口的结构,要能防止液滴的带出的积累,可采用同气体进口结构相似的开向下的引出管,或者在出口接管之前加装除沫挡板或加装一开口向上的分离袋囊,袋底砖有小孔,以泄去分离出来的液体,当气体夹带液滴较多时,则需要令装除。液体进出口管多是直接通向喷淋装置,其结构需要按喷淋装置的要求而定。液体的出口装置应该便于塔内液体的排放,不易堵塞,而且又能将塔设备的内部与外部大气相隔离。也提出扣装置在负压操作的塔设备中必须另装液封装置。例如倒U形管等。有时不另装液封装置而把塔的下部当作缓冲器用,即其中经常贮有一定量的液体,并保持液面恒定,在有的塔设备中,液体出口装置采用防涡流板,可以消除邻近出口处的旋涡,这一结构也可用于液体不太清洁的场合,另外,也要注意防止瓷环碎片漏入液体出口管,使管道堵塞,可装设挡网等。此外,填料卸出口可按塔径大小,在人孔、手孔的标准尺寸中进行选择。3.5.1 液体进出料管进料管的结构类型很多,有直管进料管、弯管进料管、T型进料管。本设计采用直管进料管,管径计算如下: m3/s取u=2 m/s, m查表可知取管径 3.5.2 气体进出料管 采用直管进料,取气速, m查表可知取管径 3.6 液体分布器液体分布装置的种类多样,有喷头式、盘式、管式、槽式、及槽盘式等。工业应用以管式、槽式、及槽盘式为主。液体在填料塔顶喷淋的均匀状况是提供塔内气液均匀分布的先决条件,也是使填料达到预期分离效果的保证。为此,分布器设计中应注意以下几点: (1)为保证液体在塔截面上均布,颗粒型(散装)填料的喷淋点数为4080个/m2(环形填料自分布性能差应取高值),此外,为减少壁流效应,喷淋孔的分布应使近塔壁520区域内的液体流量不超过总液量的10。规整填料一般为100200个/m2喷淋点。 (2)喷淋孔径不宜小于2mm,以免引起堵塞,孔径也不宜过大,否则液位高度难维持稳定。 该吸收塔液相负荷较大,而气相负荷相对较低,故选用槽式液体分布器。按Eckert建议值,D1200mm时,喷淋点密度为42点/m2,因该塔液相负荷较大,设计取喷淋点密度为100点m2。表3-6 Eckert的散装填料塔分布点密度推荐值塔径,mm分布点密度,塔截面D=400330D=750170D1200423.7 其他附属塔内件的选择3.7.1 填料支承板的选择填料支承板既要具备一定的机械强度以承受填料层及其所持液的重量,又要立出足够的空隙面积供气、液流通,气体通过支承板的空隙的线速度不能大于通过填料层空隙的线速度,否则便会在填料层内尚未发生液泛之前,已在支承板处发生液泛,一般要求支承板的自由截面积与塔截面积之比大于填料层的孔隙率。最简单的支承装置是用扁钢条制作的格栅或开孔的金属板(亦有特制的陶瓷开孔板以适应耐腐蚀要求)。格栅的间隙或孔板的孔径如果过大,容易使填料落下,此时可用支承装置上先铺一层尺寸较大的同类填料。3.7.2 除沫器的选择根据除沫装置类型的使用范围,该填料塔选取丝网除沫器。 常用的除雾装置介绍如下:折板除雾器是一种最为简单有效的结构。除雾板由50mm *50mm*3mm的角钢组成,板间横向距离为25mm,垂直流过的气速可按下式计算丝网除雾器是一种效率较高的除雾器,可除去大于5m的液滴,效率可达98%99%,但压强降较折流板式除雾器为大,约为0.245kpa,且不适用于气液中含有粘结物或固体物质(例如碱液或碳酸氢铵溶液等),因为液体蒸发后留下固体物质容易堵塞丝网孔,影响塔的正常操作。工艺设计计算结果汇总意义及符号结果混合气体处理量G2800m3/h气液相平衡常数m2.09进塔气相摩尔分率y10.00526出塔气相摩尔分率y20.00158进塔液相摩尔分率x10.0128出塔液相摩尔分率x20最小液气比L/V2.03混合气体平均式量30.45 kg/mol混合气体的密度1.245 kg/m3混合气体的粘度0.06606 kg/(m.h)吸收剂用量L10600.751 kmol/h塔径D800mm填料层高Z6.0m总塔高10.4m总压降1568.46pa液体进出料管尺寸21925气体进出料管尺寸27325气相总传质单元高度0.5441m气相总传质单元数7.7空塔气速1.618 m/s泛点气速2.697 m/s泛点率f57.4%设计总结通过课程设计我遇到了在理论计算中不曾遇到的困难,使我认识到实际与理论的差距。填料的选择是决定填料塔性能的主要因素,在决定如何选择塔填料时要考虑多方面的因素,如:填料的类型等。设计过程中计算所需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论