已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
最新考纲展示 1 理解等差数列的概念 2 掌握等差数列的通项公式与前n项和公式 3 能在具体的问题情境中识别数列的等差关系 并能用有关知识解决相应的问题 4 了解等差数列与一次函数的关系 第二节等差数列及其前n项和 等差数列的定义通项公式及前n项和公式 1 定义 如果一个数列从起 每一项与它的前一项的等于同一个常数 那么这个数列就叫做等差数列 符号表示为 n n d为常数 第2项 差 an 1 an d 等差中项 3 通项公式 an a1 n 1 d 通关方略 1 概念中的 同一个常数 十分重要 如果一个数列 从第2项起 每一项与它的前一项的差 尽管等于常数 但不是同一个常数 那么这个数列就不是等差数列 2 由等差数列通项公式的变形可知 已知等差数列中的任意两项就可以确定等差数列中的任何一项 解析 根据已知 a1 2d 6 3a1 3d 12 解得d 2 答案 c 2 2014年郑州模拟 等差数列 an 的前7项和等于前2项和 若a1 1 ak a4 0 则k 答案 6 等差数列的性质 数列 an 是等差数列 sn是其前n项和 则 1 若m n p q 则 特别地 若m n 2p 则am an 2ap 2 am am k am 2k am 3k 仍是等差数列 公差为 3 数列sm s2m sm s3m s2m 也是等差数列 am an ap aq kd 通关方略 1 等差数列 an 中 若m p q 则am ap aq 不一定成立 只有当a1 d时才成立 2 运算性质求解基本运算 可减少运算量 但要注意判断项数之间的关系 3 已知等差数列 an 的前n项和为sn 若a4 3a8 a12 120 则2a11 a14 s15 a 384b 382c 380d 352 答案 a 4 2014年石家庄模拟 已知等差数列 an 满足a2 3 sn sn 3 51 n 3 sn 100 则n的值为 a 8b 9c 10d 11 答案 c 等差数列的判定 反思总结等差数列的判定方法 1 定义法 对于n 2的任意自然数 验证an an 1为同一常数 2 等差中项法 验证2an 1 an an 2 n 3 n n 成立 3 通项公式法 验证an pn q 4 前n项和公式法 验证sn an2 bn 注意 在解答题中常应用定义法和等差中项法 而通项公式法和前n项和公式法主要适用于选择题 填空题中的简单判断 变式训练1 已知数列 an 的通项公式an pn2 qn p q r 且p q为常数 1 当p和q满足什么条件时 数列 an 是等差数列 2 求证 对任意实数p和q 数列 an 1 an 是等差数列 解析 1 an 1 an p n 1 2 q n 1 pn2 qn 2pn p q 要使 an 是等差数列 则2pn p q应是一个与n无关的常数 所以只有2p 0 即p 0 故当p 0 q r时 数列 an 是等差数列 2 证明 an 1 an 2pn p q an 2 an 1 2p n 1 p q an 2 an 1 an 1 an 2p为一个常数 an 1 an 是等差数列 等差数列的基本运算 例2 1 2013年高考全国新课标卷 设等差数列 an 的前n项和为sn 若sm 1 2 sm 0 sm 1 3 则m a 3b 4c 5d 6 2 2014年山西四校第一次联考 在等差数列 an 中 a2 2 a3 4 则a10 a 12b 14c 16d 18 答案 1 c 2 d 答案 c 等差数列的基本性质 答案 1 c 2 a 变式训练3 2014年无锡模拟 已知等差数列 an 的前n项和为sn 且s10 10 s20 30 则s30 解析 s10 s20 s10 s30 s20成等差数列 2 s20 s10 s10 s30 s20 40 10 s30 30 s30 60 答案 60 等差数列的前n项和最值问题 与等差数列前n项和有关的最值问题是命题的热点 主要命题角度有 1 前n项和的最大值 2 前n项和的最小值 3 与前n项和有关的最值问题 等差数列前n项和最大值问题 典例1 已知数列 an 是等差数列 a1 a3 a5 105 a2 a4 a6 99 an 的前n项和为sn 则使得sn达到最大的n是 a 18b 19c 20d 21 解析 a1 a3 a5 105 a3 35 a2 a4 a6 99 a4 33 则 an 的公差d 33 35 2 a1 a3 2d 39 sn n2 40n 因此当sn取得最大值时 n 20 答案 c 等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多功能地质勘察车创新创业项目商业计划书
- 摩托车智能头盔通信系统集成创新创业项目商业计划书
- 中式面点师(初级)实操模拟考试题库含答案
- 住院医师心力衰竭诊疗技能培训方案(2025ESC指南)考核试卷
- 2025年基因编辑技术的临床伦理与监管政策
- 南大版七年级全一册心理健康教育第十三课《让思维活跃起来》教案
- 2025年建党104周年党史党章百题知识竞赛问答题库及答案
- 2025年荆门辅警招聘考试真题附答案详解ab卷
- 2025年漳州辅警协警招聘考试真题(含答案详解)
- 2025年贵阳辅警协警招聘考试真题及参考答案详解
- 2025年(完整)护理三基知识考试必考题库及答案
- 2025年全国共青团“新团员入团”应知应会知识考试试卷及完整答案详解【有一套】
- 中小学实验教学基本目录(2023 年版)
- 2025年养老护理员中级理论知识考试题库及答案(共400题)
- 转体桥的施工方案
- 2025重庆双福农产品批发市场有限公司招聘综合办公室文员、冻库管理员、招商员等岗位22人备考参考试题及答案解析
- 2025年下半年扬州大数据集团公开招聘30人备考参考试题及答案解析
- 2025年6月高校英语应用能力A级真题及答案解析
- 重疾险医学知识培训课件
- 广西贵百河联考2025-2026学年高一上学期10月月考语文试卷
- (正式版)DB65∕T 4935-2025 《医疗机构即时检验质量管理规程》
评论
0/150
提交评论