




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.数学分析题目讲解一、 单项选择题(每小题2分,共14分)1、设数列满足且,则为【 】A、0 B、1 C、 D、22、已知 则是的【 】A、第一类不连续点B、第二类不连续点C、连续点D、可去不连续点3、已知,则在处【 】A、左可导 B、右可导 C、可微 D、不连续4、若存在,下列说法一定正确的是【 】A、在的任一邻域内有界B、在的某一邻域内无界C、在的某一邻域内有界D、在的任一邻域内无界5、若在处连续,并且,则【 】A、且存在 B、且存在C、且存在D、且存在6、若在点处存在左、右导数,则在点处必然【 】A、可导B、不可导C、连续D、不连续7、下列叙述错误的是【 】A、若在点可导,则在点可微;B、若在点可导,则在点连续;C、若在点可导,则;D、设在点可导,则是极值点当仅当.参考答案:1. B 2.C 3.A 4.C 5.B 6.C 7.D 二、填空题(每小题3分,共21分)1、 2、曲线上平行于直线的切线的方程为 3、设,则 4、曲线的斜渐近线为 5、函数的极小值点 _ _6、已知当时与等价,则 7、 参考答案:1. ;2. ;3. 5;4. ;5. 4;6. 1;7. 三、计算题(每小题6分,共36分)1、计算.1、计算解:设,由于, , ,(4分)由夹逼性,即原极限为1。(6分)2. 求极限 3. 已知任意次可微,求的二阶微分.3. 已知任意次可微,求的.解:令,则, (2分)所以, (6分)4. 求方程所确定的函数的导数.4.求方程所确定的函数的导数.5. 设,求.解:对等式两端取对数,(1分)再对上式两端分别求导, (4分) (5分)所以,6. 求由方程所确定的函数的微分.解:在方程两端对求导,得. (3分)解此方程,得。 (4分) 所以,。 (6分)四、综合题(3小题,共29分)1. 叙述证明题(4小题,共14分)(1)叙述(有限)的定义;(3分)(2)叙述数列的柯西(Cauchy)收敛原理;(3分)(3)叙述在区间内一致连续的定义;(3分)(4)证明在上一致连续。(5分)解:(1)(有限)的定义:对任意给定的,存在正整数,当时,有。 (3分)(2)数列的柯西(Cauchy)收敛原理:数列收敛的充要条件是是一个基本数列。(3分)(3)在区间内一致连续的定义:若在区间内满足对任意的,存在,使得对内任意两点与,当时,总有,则称在区间内一致连续。 (3分)(4)证明:对任意,由于故对任意的,取,则对内任意两点与,当时,总有,即在上一致连续。 (5分)2. 证明:当时,.(7分)证明:(1)证明. 根据Lagrange中值定理,(2分)由于,所以。 (3分)(2)证明. 令,则,(2分)当时,严格单调递减,由,知,从而。 (4分)3. 设在区间可导,且,证明:(1)存在使得;(5分)(2)在内至少有两个零点。(3分)证明:(1)由,存在,使当时,有,此时,。在中去一点,有;由,存在,使当时,有,此时,。在中去一点,有。(3分)于是,。由在可导,在连续,由中间值定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025成都银行总行金融科技岗(第三批次)招聘考前自测高频考点模拟试题及一套参考答案详解
- 2025河南新乡事业单位招录203人模拟试卷及答案详解(名校卷)
- 2025安徽阜阳市界首市“政录企用”人才引进8人模拟试卷有答案详解
- 2025广东深圳长虹聚和源科技有限公司招聘业务经理岗位人员考前自测高频考点模拟试题有答案详解
- 2025福建医科大学安全保卫人员招聘2人(四)模拟试卷及答案详解(考点梳理)
- 2025贵阳市某企业招聘工作人员考前自测高频考点模拟试题含答案详解
- 2025年山东辉煌国际物流发展有限公司社会招聘考前自测高频考点模拟试题及答案详解参考
- 2025广东惠州市博罗县碧盛环保科技有限公司招聘及考前自测高频考点模拟试题及答案详解一套
- 2025河南郑州市建筑设计研究院招聘35人考前自测高频考点模拟试题及完整答案详解
- 2025福建南平市供电服务有限公司招聘52人模拟试卷及1套完整答案详解
- 国开2025年《行政领导学》形考作业1-4答案
- 广东省广州市天河执信中学2024-2025学年九年级上学期期中考试化学试卷(含答案)
- 安徽省蚌埠市2025-2026学年高三上学期调研性监测语文(含答案)
- 医生进修6个月汇报大纲
- 外科病人的心理护理讲课件
- 农村土地使用权转让协议书
- 部编人教版小学三年级语文上册全册教案
- DL∕T 817-2014 立式水轮发电机检修技术规程
- (高清版)DZT 0334-2020 石油天然气探明储量报告编写规范
- 2024年浙江卷1月读后续写(路痴的自我救赎)讲义-高考英语作文复习专项2
- 脑电图与脑功能活动
评论
0/150
提交评论