




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲数列的求和问题 专题四数列 推理与证明 高考真题体验 热点分类突破 高考押题精练 栏目索引 高考真题体验 1 2 1 2015 福建 在等差数列 an 中 a2 4 a4 a7 15 1 求数列 an 的通项公式 解设等差数列 an 的公差为d 所以an a1 n 1 d n 2 1 2 2 设bn n 求b1 b2 b3 b10的值 解由 1 可得bn 2n n 所以b1 b2 b3 b10 2 1 22 2 23 3 210 10 2 22 23 210 1 2 3 10 1 2 2 2014 课标全国 已知 an 是递增的等差数列 a2 a4是方程x2 5x 6 0的根 1 求 an 的通项公式 解方程x2 5x 6 0的两根为2 3 由题意得a2 2 a4 3 设数列 an 的公差为d 则a4 a2 2d 1 2 1 2 两式相减得 考情考向分析 高考对数列求和的考查主要以解答题的形式出现 通过分组转化 错位相减 裂项相消等方法求一般数列的和 体现转化与化归的思想 热点一分组转化求和 热点分类突破 有些数列 既不是等差数列 也不是等比数列 若将数列通项拆开或变形 可转化为几个等差 等比数列或常见的数列 即先分别求和 然后再合并 例1等比数列 an 中 a1 a2 a3分别是下表第一 二 三行中的某一个数 且a1 a2 a3中的任何两个数不在下表的同一列 1 求数列 an 的通项公式 解当a1 3时 不合题意 当a1 2时 当且仅当a2 6 a3 18时 符合题意 当a1 10时 不合题意 因此a1 2 a2 6 a3 18 所以公比q 3 故an 2 3n 1 n n 2 若数列 bn 满足 bn an 1 nlnan 求数列 bn 的前n项和sn 解因为bn an 1 nlnan 2 3n 1 1 nln 2 3n 1 2 3n 1 1 n ln2 n 1 ln3 2 3n 1 1 n ln2 ln3 1 nnln3 所以sn 2 1 3 3n 1 1 1 1 1 n ln2 ln3 1 2 3 1 nn ln3 当n为偶数时 当n为奇数时 思维升华 在处理一般数列求和时 一定要注意使用转化思想 把一般的数列求和转化为等差数列或等比数列进行求和 在求和时要分析清楚哪些项构成等差数列 哪些项构成等比数列 清晰正确地求解 在利用分组求和法求和时 由于数列的各项是正负交替的 所以一般需要对项数n进行讨论 最后再验证是否可以合并为一个公式 跟踪演练1在等差数列 an 中 a3 a4 a5 84 a9 73 1 求数列 an 的通项公式 解因为 an 是一个等差数列 所以a3 a4 a5 3a4 84 所以a4 28 设数列 an 的公差为d 则5d a9 a4 73 28 45 故d 9 由a4 a1 3d得28 a1 3 9 即a1 1 所以an a1 n 1 d 1 9 n 1 9n 8 n n 2 对任意m n 将数列 an 中落入区间 9m 92m 内的项的个数记为bm 求数列 bm 的前m项和sm 解对m n 若9m an 92m 则9m 8 9n 92m 8 因此9m 1 1 n 92m 1 故得bm 92m 1 9m 1 于是sm b1 b2 b3 bm 9 93 92m 1 1 9 9m 1 热点二错位相减法求和 错位相减法是在推导等比数列的前n项和公式时所用的方法 这种方法主要用于求数列 an bn 的前n项和 其中 an bn 分别是等差数列和等比数列 例2已知数列 an 的前n项和为sn 且有a1 2 3sn 5an an 1 3sn 1 n 2 1 求数列 an 的通项公式 解3sn 3sn 1 5an an 1 n 2 又 a1 2 2 若bn 2n 1 an 求数列 bn 的前n项和tn 解bn 2n 1 22 n tn 1 21 3 20 5 2 1 2n 1 22 n tn 12 2n 3 22 n 思维升华 1 错位相减法适用于求数列 an bn 的前n项和 其中 an 为等差数列 bn 为等比数列 2 所谓 错位 就是要找 同类项 相减 要注意的是相减后得到部分 求等比数列的和 此时一定要查清其项数 3 为保证结果正确 可对得到的和取n 1 2进行验证 跟踪演练2设数列 an 的前n项和为sn 已知a1 1 sn 1 2sn n 1 n n 1 求数列 an 的通项公式 解 sn 1 2sn n 1 当n 2时 sn 2sn 1 n an 1 2an 1 an 1 1 2 an 1 又s2 2s1 2 a1 s1 1 当n 1时 式也成立 an 1 2n 即an 2n 1 n n 解 an 2n 1 热点三裂项相消法求和 1 求sn的表达式 得2snsn 1 sn sn 1 0 由于sn 0 思维升华 1 裂项相消法的基本思想就是把通项an分拆成an bn k bn k 1 k n 的形式 从而达到在求和时某些项相消的目的 在解题时要善于根据这个基本思想变换数列 an 的通项公式 使之符合裂项相消的条件 思维升华 2 常化的裂项公式 99 解析 a1 1 an 1 an n 1 a2 a1 2 a3 a2 3 an an 1 n 高考押题精练 1 2 押题依据数列的通项以及求和是高考重点考查的内容 也是 考试大纲 中明确提出的知识点 年年在考 年年有变 变的是试题的外壳 即在题设的条件上有变革 有创新 但在变中有不变性 即解答问题的常用方法有规律可循 1 2 答案1 1 2 2 已知数列 an 的前n项和sn满足sn a sn an 1 a为常数 且a 0 且4a3是a1与2a2的等差中项 1 求 an 的通项公式 押题依据错位相减法求和是高考的重点和热点 本题先利用an sn的关系求an 也是高考出题的常见形式 1 2 解 1 当n 1时 s1 a s1 a1 1 所以a1 a 当n 2时 sn a sn an 1 sn 1 a sn 1 an 1 1 故 an 是首项a1 a 公比等于a的等比数列 所以an a an 1 an 故a2 a2 a3 a3 1 2 由4a3是a1与2a2的等差中项 可得8a3 a1 2a2 即8a3 a 2a2 因为a 0 整理得8a2 2a 1 0 即 2a 1 4a 1 0 1 2 所以tn 3 2 5 22 7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业春季安全培训总结课件
- 养护安全作业培训目的课件
- 农业安全培训通讯课件
- 别吸烟了课件
- 初高阶语音课件
- 初识代数式讲解课件
- 化工二级安全培训课件
- 内部消防安全培训会议课件
- 2024-2025学年江苏省苏州市重点校初三上学期数学期中试卷【附答案】
- 内踝骨折康复课件
- 学校“1530”安全教育记录表(2024年秋季全学期)
- 仪表设备管理实施细则
- 磷化工工艺流程
- 2025云南红河州红投永良矿业限公司招聘2人高频重点模拟试卷提升(共500题附带答案详解)
- 新入职教师法律法规培训
- 数字经济与就业
- 2024年-2025年司法考试真题及复习资料解析
- 幼儿园护学岗职责
- 国开电大《组织行为学》形考任务1-4
- 施工安全生产风险分级管控和隐患排查治理双重预防机制建设实施方案
- 精细化工技术-大学专业介绍
评论
0/150
提交评论