




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时参数方程的概念圆的参数方程学习目标:1.了解曲线的参数方程的概念与特点.2.理解圆的参数方程的形式和特点(重点)3.运用圆的参数方程解决最大值、最小值问题(难点、易错点)教材整理1参数方程的概念阅读教材P21P23“圆的参数方程”以上部分,完成下列问题一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,并且对于t的每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程方程(是参数)所表示曲线经过下列点中的()A(1,1)B.C. D.解析将点的坐标代入方程:,解的值若有解,则该点在曲线上答案C教材整理2圆的参数方程阅读教材P23P24“思考”及以上部分,完成下列问题1如图,设圆O的半径为r,点M从初始位置M0(t0时的位置)出发,按逆时针方向在圆O上作匀速圆周运动,设M(x,y),点M转过的角度是,则(为参数),这就是圆心在原点,半径为r的圆的参数方程2圆心为C(a,b),半径为r的圆的普通方程与参数方程:普通方程参数方程(xa)2(yb)2r2(为参数)圆的参数方程为:(为参数),则圆的圆心坐标为()A(0,2) B(0,2)C(2,0) D(2,0)解析圆的普通方程为(x2)2y24,故圆心坐标为(2,0)答案D参数方程的概念【例1】已知曲线C的参数方程是(t为参数,aR),点M(3,4)在曲线C上(1)求常数a的值;(2)判断点P(1,0),Q(3,1)是否在曲线C上?思路探究(1)将点M的横坐标和纵坐标分别代入参数方程中的x,y,消去参数t,求a即可;(2)要判断点是否在曲线上,只要将点的坐标代入曲线的普通方程检验即可,若点的坐标是方程的解,则点在曲线上,否则,点不在曲线上自主解答(1)将M(3,4)的坐标代入曲线C的参数方程得消去参数t,得a1.(2)由上述可得,曲线C的参数方程是把点P的坐标(1,0)代入方程组,解得t0,因此P在曲线C上,把点Q的坐标(3,1)代入方程组,得到这个方程组无解,因此点Q不在曲线C上点与曲线的位置关系:满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上、点不在曲线上(1)对于曲线C的普通方程f(x,y)0,若点M(x1,y1)在曲线上,则点M(x1,y1)的坐标是方程f(x,y)0的解,即有f(x1,y1)0,若点N(x2,y2)不在曲线上,则点N(x2,y2)的坐标不是方程f(x,y)0的解,即有f(x2,y2)0.(2)对于曲线C的参数方程(t为参数),若点M(x1,y1)在曲线上,则对应的参数t有解,否则参数t不存在1已知曲线C的参数方程为(为参数,02)判断点A(2,0),B是否在曲线C上?若在曲线上,求出点对应的参数的值解把点A(2,0)的坐标代入得cos 1且sin 0,由于02,解之得0,因此点A(2,0)在曲线C上,对应参数0.同理,把B代入参数方程,得又00时是一条射线;当t0时,也是一条射线,故选C.答案C4已知(t为参数),若y1,则x_.解析当y1时,t21,t1,当t1时,x2;当t1时,x0.x的值为2或0.答案2或05在平面直角坐标系xOy中,动圆x2y28xcos 6ysin 7cos280
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轨道交通设施对城市景观的影响分析考核试卷
- 镁矿开采安全风险评估与防范措施考核试卷
- 航运物流与区块链技术考核试卷
- 航空器飞行器驾驶员培训与考核试卷
- 成人高考法律基础知识与案例分析考核试卷
- 铬矿在建筑材料领域的应用研究考核试卷
- 牙齿的常见疾病类型概述
- 体育课急救知识
- 口腔设备学X线洗片机
- 麻醉手术室基础认知与操作规范
- 昆明市用人单位人员就业(录用)登记表
- 公司职业病危害防治责任制度
- 第十八章:爬行纲课件
- 米亚罗-孟屯河谷风景名胜区旅游基础设施建设项目环评报告
- 滁州市第一人民医院医疗暂存间环保设施提升改造项目环境影响报告表
- 籍贯对照表完整版
- 警用无人机考试题库(全真题库)
- 中等职业学校英语课程标准(2020年版)(word精排版)
- 医保业务知识题库
- 等级医院评审中应注意的迎评礼仪
- 吉林省长春市东北师大附中明珠学校2023年物理八年级第二学期期末统考模拟试题含解析
评论
0/150
提交评论