




已阅读5页,还剩79页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路 数学 路漫漫其修远兮吾将上下而求索 新课标版 二轮专题复习 数列 专题三 第一讲等差 等比数列的通项 性质与前n项和 专题三 命题角度聚焦 方法警示探究 核心知识整合 命题热点突破 课后强化作业 学科素能培养 1 以客观题考查对基本概念 性质 通项及前n项和公式的掌握情况 主要是低档题 有时也命制有一定深度的中档题 与其他知识交汇命题也是这一部分的一个显著特征 2 以大题形式考查综合运用数列知识解决问题的能力 3 复习数列专题要把握等差 等比数列两个定义 牢记通项 前n项和四组公式 活用等差 等比数列的性质 明确数列与函数的关系 巧妙利用an与sn的关系进行转化 细辨应用问题中的条件与结论是通项还是前n项和 集中突破数列求和的五种方法 公式法 倒序相加法 错位相减法 分组求和法 裂项相消法 1 应用an与sn的关系 等比数列前n项和公式时 注意分类讨论 2 等差 等比数列的性质可类比掌握 注意不要用混 3 讨论等差数列前n项和的最值时 不要忽视n为整数的条件和an 0的情形 4 等比数列 an 中 公比q 0 an 0 文 2014 乌鲁木齐地区诊断 已知等比数列 an 中 a1 2 a3 18 等差数列 bn 中 b1 2 且a1 a2 a3 b1 b2 b3 b4 20 1 求数列 an 的通项公式 2 求数列 bn 的前n项和sn 等差数列 等比数列的基本运算 判定或证明 文 设数列 an 的前n项和为sn 且sn 4an p n n 其中p是不为零的常数 1 证明 数列 an 是等比数列 2 当p 3时 若数列 bn 满足bn 1 an bn n n b1 2 求数列 bn 的通项公式 方法规律总结 1 求基本量的问题 熟记等差 等比数列的定义 通项及前n项和公式 利用公式 结合条件 建立方程求解 2 证明数列是等差 等比 数列时 应用定义分析条件 结合性质进行等价转化 等差 等比数列的性质 解析 依题意得a6 s6 s50 2a3 3a4 5a5 a1 6a6 5 a1 4d a1 6 a1 5d 2 a1 5d 2a6 0 5a5 a1 6a6 a5 a4 a3 a3 a6 a3 a6 0 综上所述 故选d 解析 lgan 的前8项和s8 lga1 lga2 lga8 lg a1a2 a8 lg a4 a5 4 4lg a4a5 4 故选c 方法规律总结 条件或结论中涉及等差或等比数列中的两项或多项的关系时 先观察分析下标之间的关系 再考虑能否应用性质解决 要特别注意等差 等比数列性质的区别 递推关系与求和 分析 1 当n 1时求出a1 当n 2时 由an sn sn 1可求得an的通项公式 2 由分组求和法及等比数列的前n项和可解决本问 数列与函数 方程 不等式等交汇命题 点评 本题考查了等差数列等比数列的通项公式 前n项和公式 乘公比错位相消以及导数的应用 本题的易错点是运用乘公比错位相消时不能正确的错位 同时指数函数的导数也是经常容易混淆的知识点 点评 本题考查等比数列的定义 通项公式的求法及不等式的证明 第二小题 在利用放缩法后 转化为等比数列的求和 由定理 公式 法则引起的分类讨论 分析 1 找出an与an 1关系 2 用错位相减法求和 方法规律总结 一次函数 二次函数 指数函数 对数函数的单调性 均值定理 等比数列的求和公式等性质 定理与公式在不同的条件下有不同的结论 或者在一定的限制条件下才成立 这时要小心 应根据题目条件确定是否进行分类讨论 抽象问题具体化 复杂问题简单化 在等比数列 an 中 a1 a 前n项和为sn 若数列 an 1 成等差数列 则sn等于 a an 1 ab n a 1 c nad a 1 n 1 答案 c 解析 利用常数列a a a 判断 则存在等差数列a 1 a 1 a 1 或通过下列运算得到 2 aq 1 a 1 aq2 1 q 1 sn na 存在性问题 分析 1 设数列 an 的公差为d 利用等比数列的性质得到a a1 a5 并用a1 d表示a2 a5 列等式求解公差d 进而求出通项 注意对公差d分类讨论 2 利用 1 的结论 对数列 an 的通项分类讨论 分别利用通项公式及等差数列的前n项和公式求解sn 然后根据sn 60n 800列不等式求解 解析 1 设数列 an 的公差为d 依题意 2 2 d 2 4d成等比数列 故有 2 d 2 2 2 4d 化简得d2 4d 0 解得d 0或d 4 当d 0时 an 2 当d 4时 an 2 n 1 4 4n 2 从而得数列 an 的通项公式为an 2或an 4n 2 此时存在正整数n 使得sn 60n 800成立 n的最小值为41 综上 当an 2时 不存在满足题意的n 当an 4n 2时 存在满足题意的n 其最小值为41 方法规律总结 存在型探索性问题解答时先假设存在 依据相关知识 概念 定理 公式 法则 性质等 结合所给条件进行推理或运算 直到得出结果或一个明显成立或错误的结论 从而断定存在与否 分析 1 利用an 1 sn 1 sn用配凑法可获证 2 假设存在 则a1 a2 a3应成等差数列求出 的值 然后依据an 2 an 推证 an 为等差数列 解析 1 由题设 anan 1 sn 1 an 1an 2 sn 1 1 两式相减得an 1 an 2 an an 1 由于an 1 0 所以an 2 an 2 由题设 a1 1 a1a2 s1 1 可得a2 1 由 1 知 a3 1 令2a2 a1 a3 解得 4 故an 2 an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年地质版(2024)小学体育与健康二年级全一册《男孩 女孩》教学设计
- 2025年高考生物试题分类汇编:种群及其动态解析版
- 2025年高考生物试题分类汇编:体液调节解析版
- 2025企业劳动合同样本
- 小白杨81章题目及答案
- 消防考试易考题目及答案
- 2025餐厅聘请厨师合同
- 乡土中国说课题目及答案
- 2025医疗设备租赁合同范本
- 物业保安试题及答案
- 超高层带伸臂结构巨型环桁架施工技术总结附图
- 2022年中石化污水处理工应知应会题库(含答案)
- 火焰探测器设计手册
- GB/T 778.1-2018饮用冷水水表和热水水表第1部分:计量要求和技术要求
- GB/T 19839-2005工业燃油燃气燃烧器通用技术条件
- GB/T 19478-2018畜禽屠宰操作规程鸡
- (完整版)人工智能介绍课件
- 陶瓷材料的制备课件
- 中职统计基础知识课件
- 预防校园欺凌-共创和谐校园-模拟法庭剧本
- 《人间词话》十则公开课
评论
0/150
提交评论