资源目录
压缩包内文档预览:(预览前20页/共34页)
编号:34425999
类型:共享资源
大小:11.35MB
格式:ZIP
上传时间:2019-12-26
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
40
积分
- 关 键 词:
-
立方米
干燥箱
设计
- 资源描述:
-
1立方米热泵干燥箱设计,立方米,干燥箱,设计
- 内容简介:
-
姜飞宇 南京工业大学 能源学院 金苏敏老师指导 热泵干燥箱简述Thebriefintroductionofheatpumpdryingbox 热泵干燥箱的优缺点Advantagesanddisadvantagesofheatpumpdryingbox 设计过程Processofdesign 设计结果Resultofdesign CONTENT 01 热泵干燥箱简述 Thebriefintroductionofheatpumpdryingbox PARTONE 1 热泵干燥箱简述 在全球能源消耗日益增加的今天 如何节能已成为当今世界的一大主题 人们日常生活中所需的多种必须品都需要经过干燥过程 而常规的干燥过程及常规干燥装置在干燥产品时 不仅干燥产品质量低 而且 干燥过程中的能耗巨大 此过程存在着广大的节能空间 1 热泵干燥箱简述 1 热泵干燥箱简述 热泵干燥箱的示意图 热泵干燥箱内空气往复循环 充分利用热空气的余热 并且避免对环境空气造成污染 1 热泵干燥箱简述 本课题所设计的就是一种新型干燥装置 热泵干燥箱 热泵干燥箱作为一种新兴的干燥装置 不仅体积小 干燥质量高 干燥周期短 而且更重要的是它在节能方面有着更加突出的优势 因而在市场推广方面有着广阔的发展前景 热泵干燥箱系统流程图 1 热泵干燥箱简述 开式半开式封闭式 直接耦合式间接耦合式 蒸汽压缩式热泵吸收式热泵化学热泵 干燥介质的循环方式 热泵子系统和干燥子系统的结合方式 热泵系统的不同 热泵干燥系统的分类 1 热泵干燥箱简述 低温热泵干燥装置低于60 中温热泵干燥装置60 120 高温热泵干燥装置高于120 电动式燃油式燃气式地热能式太阳能式等 工作温度 驱动能源 热泵干燥系统的分类 02 热泵干燥箱的优缺点 Advantagesanddisadvantagesofheatpumpdryingbox PARTTWO 2 热泵干燥箱的优缺点 热泵干燥箱相比于其他干燥装置具有以上一些优点 2 热泵干燥箱的优缺点 03 设计过程 Processofdesign PARTTHREE 3 设计过程 3 设计过程 04 设计结果 Resultofdesign PARTFOUR 4 设计结果 1m 热泵干燥箱 姜飞宇 南京工业大学 能源学院 指导老师 金苏敏 感谢学院各位老师四年以来无微不至的关照感谢金老师在毕设期间的悉心指导感谢陪伴我四年的同学和室友谢谢 热泵循环的参数 由表格计算得出 在风量为75m3 h时 最大除湿量为5 673kg h 此时蒸发器出口风温为38 25 蒸发器 蒸发器盖板 蒸发器回气管 蒸发器肋片 蒸发器弯头 蒸发器弯管管 选定冷凝器出口风温为65 冷凝器 冷凝器集气管 冷凝器盖板 冷凝器肋片 冷凝器换热管 总装图 外形图 风机选自上海泉贸机电有限公司生产的FZW系列轴流风机 压缩机选择美国谷轮公司生产的ZB15KQ型热泵压缩机 功率2 06kw 制冷量为4 75kw 512.5200112.5612.560514634512.512.5213=632048880.2100.788 技术要求1. 组装及铜管焊接后,从进口及出口进行水压试验,压力2.5MPa,保压半小时后应无泄漏,再进行气密性检验,压力2.0MPa,氮气或空气在水中进行不得有泄漏;2. 所以焊缝要确保牢固无泄漏;3. 肋片套到铜管上后,进行胀管,将铜管胀大到10以确保肋片紧密结合;4. 换热管组装到蒸发器上后在与弯头焊合前在端口扩一个喇叭口。100.7123456789101112左支架弯头螺栓 M630螺母 M6垫片 M6上端盖右支架进口集气管肋片换热管出口集气管下端盖1180111180202020 RN120213-01-02-02 RN120213-01-02-03 RN120213-01-02-04 RN120213-01-02-01 RN120213-01-02-03 RN120213-01-02-02GB/T 97.1-2002GB/T 5780-2000GB/T 5783-2000校核制图设计文件名图幅A1重量数量比例工程名称专业设计阶段南京工业大学能源学院序号图号或标准号名称与规格数量材料重量(Kg)单重总重备注1:21RN120213-01-02-00冷 凝 器审定审核铝板 =1T4 100.7铝板 =1铝板 =1铝板 =0.2T4T4铝板 =1T41立方米热泵干燥箱2576-627kg0.32360.0162 1.2960.0043 0.08620.32360.00230.001420.2450.3240.130.0250.2260.130.2450.2450.1318.086.430.130.3240.2450.0280.0462562.5204825 2525 37.52519=475B5:1A2:1B12A36789101112银焊452.0姜飞宇姜飞宇姜飞宇25 252120051425100.7 换热管表面光滑,去除毛刺。技术要求RN120213-01-02-04T4 100.72:1审阅绘图设计冷凝器换热管比例数量材料重量南京工业大学能源学院8018.08kgR12.5姜飞宇姜飞宇12.5252519=475512.512.521213=638010880.22100.71.10孔冲压时允许内外圆角R24。2.孔纵横方向之中心差由模具保证。3.所以肋片材料应保证一致,外型尺 寸差由模具保证,四个角均为直角。技术要求AAAA5:1RN120213-01-02-01铝 =0.21:2审阅绘图设计冷凝器肋片比例数量材料重量南京工业大学能源学院2576.43kg姜飞宇姜飞宇41774球R80.750507=35068160.7100.7160.7技术要求焊接采用银钎焊,焊缝牢固,光滑无泄漏。校核制图设计文件名图幅A3重量数量比例工程名称专业设计阶段.南京工业大学能源学院1RN120213-01-01-03回 气 管审定审核1m热泵干燥箱1:10.92kg3RN120213-01-01-05-02直管8T4 16x0.72RN120213-01-01-05-03主管道1T4 16x0.71RN120213-01-01-05-01主管道封头1T4 160.7序号图号或标准号名称与规格数量材料单重总重备注重量(Kg)0.00420.1450.0960.00420.1450.769AA1:1123AA姜飞宇姜飞宇姜飞宇100.712.556.25RN120213-01-01-04T4 1073:1审阅绘图设计蒸发器弯头比例数量材料重量南京工业大学能源学院560.907kg姜飞宇姜飞宇11校核制图设计文件名图幅A1重量数量比例工程名称专业设计阶段南京工业大学能源学院1RN120213-01总 装 图审定审核1m热泵干燥箱1:8序号 图号或标准号名称与规格数量材料重量(Kg)单重总重备注01020304050607080918机架1111111 风机控制面板前板铭牌积水盘蒸发器空气过滤网出液管冷凝器铜160.71.271.273.13.1171724.70.918 0.91827271RN120213-01-02-00RN120213-01-01-00FZW-4001薄钢板=1.2铝板=117161514131112102011111铜160.7 压力控制器压力表、控制器架过滤器 高压压力表保温层电气控制箱回气管分液器压缩机0.130.040.040.1326RN120213-01-01-03261谷轮ZB15KQ121出水管1221. 安装焊接热泵系统零部件与管道时应保证热泵系统内干净无杂物。2. 热泵系统安装完毕后应用氮气进行气密性检漏,要求试压压力为2.5MPa,24小时系统内压力不得超过0.002MPa。3. 氮气试压合格后热泵系统进行抽真空试验,24小时后检验,合格后充注制冷剂R22。4. 热泵系统管道焊接采用银钎焊,焊缝不得有虚焊、气孔等现象。5. 压缩机回气管采用保温材料。6. 机架按门板配钻,采用M3自攻螺钉进行安装。7. 过滤网定期拆除清洗。8. 积水盘排水管、水冷冷凝器进水管和出水管均采用螺纹连接。技术要求LF6 =0.31/4镀锌钢管聚氨酯外购外购电气外协外购157kg制冷量4.75kw量程03.5MPa低压0.08MPa0.6MPa风量2950m/hGR2510-3.5MYWK-24外购高压0.06MPa3MPaGR2510-1.5M 低压压力表1外购量程01.5MPaGB/T 3091-20085856168150123422242678981011121314151718192021161底座槽钢519303069835522513400=12001604142275525711404660.918 0.9185082504=1000167620AA无比例B银钎焊B无比例RN120213-01-02-011.6100.734825 换热管表面光滑,去除毛刺。技术要求RN120213-01-01-05T4 100.72:1审阅绘图设计蒸发器换热管比例数量材料重量南京工业大学能源学院240.576 kgR12.5姜飞宇姜飞宇5148838251530两端弯板内半径R=58,连接部分用氩弧焊。技术要求RN120213-01-02-02铝板 =11:1审阅绘图设计冷凝器盖板 (上下)比例数量材料重量南京工业大学能源学院20.49kg姜飞宇姜飞宇1.10孔冲压时允许内外圆角R24。2.孔纵横方向之中心差由模具保证。3.所以肋片材料应保证一致,外型尺寸差由模具 保证,四个角均为直角。技术要求0.23.4100.712.5252515=375417.52111.8213=6386.664-10AAAA4:1RN120213-01-01-01铝1:2审阅绘图设计蒸发器肋片比例数量材料重量南京工业大学能源学院484812.41kg姜飞宇姜飞宇1752.62086.647660348470838507=35011.8251516R12.5100.7 技术要求1. 组装及铜管焊接后,从进口及出口进行水压试验,压力2.5MPa,保压半小时后应无泄漏,再进行气密性检验,压力2.0MPa,氮气或空气在水中进行不得有泄漏;2. 所以焊缝要确保牢固无泄漏;3. 肋片套到铜管上后,进行胀管,将铜管胀大到10以确保肋片紧密结合;4. 换热管组装到蒸发器上后在与弯头焊合前在端口扩一个喇叭口。12345678910左支架弯头螺栓 M630螺母 M6垫片 M6盖板右支架回气管肋片换热管24111156161616 RN120213-01-01-05 RN120213-01-01-01 RN120213-01-01-03 RN120213-01-01-02 RN120213-01-01-04GB/T 97.1-2002 GB/T 5780-2000 GB/T 5783-2000校核制图设计文件名图幅A1重量数量比例工程名称专业设计阶段南京工业大学能源学院序号图号或标准号名称与规格数量材料重量(Kg)单重总重备注1:21RN120213-01-01-00蒸 发 器审定审核铝板 =1T4 100.7铝板 =1铝板 =0.2T4铝板 =1T41m热泵干燥箱484853.52150=30082.520660.24814kg0.01620.2480.9070.060.00430.0023 0.0320.020.00140.1650.2480.9180.02560.0240.57612.410.9180.2480.165417银焊 B12A3 4 5678910B5:1A2:1213=6348.547686.65025 251502134886.686.6402022四周弯板内半径R=58,连接部分用氩弧焊。技术要求RN120213-01-01-02铝=11:1审阅绘图设计蒸发器盖板比例数量材料重量南京工业大学能源学院10.165kg4-642.3姜飞宇姜飞宇100.717焊缝应光滑,牢固无泄漏。技术要求94160.7700.015521213=63球R80.776100.78017353523422.5制图校核设计文件名图幅A34RN120213-01-02-06-02直管3T4 16x0.73RN120213-01-02-06-04弯管3T4 10x0.72RN120213-01-02-06-03主管道1T4 16x0.71RN120213-01-01-05-01主管道封头1T4 160.7序号图号或标准号名称与规格数量材料单重总重备注重量(Kg)0.00420.04070.00420.04070.04650.0127 0.03811比例设计阶段工程名称重量RN120213-01-02-03专业1数量南京工业大学能源学院施工图1:1审核审定1m热泵干燥箱0.13kg进(出)口集气管姜飞宇姜飞宇姜飞宇“中国知网”大学生论文管理系统- 1 - 文本复制检测报告单(简洁) ADBD2016R_2016053111113820160531131859410694106252 检测时间:2016-05-31 13:18:59检测文献:3501120213 姜飞宇 金苏敏 作者:检测范围:中国学术期刊网络出版总库中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库中国重要会议论文全文数据库中国重要报纸全文数据库中国专利全文数据库大学生论文联合比对库互联网资源英文数据库(涵盖期刊、博硕、会议的英文数据以及德国Springer、英国Taylor&Francis 期刊数据库等)港澳台学术文献库优先出版文献库互联网文档资源图书资源个人比对库时间范围:1900-01-01至2016-05-31检测结果总文字复制比:0.5% 跨语言检测结果:0%去除引用文献复制比:0.5% 去除本人已发表文献复制比:0.5%单篇最大文字复制比:0.3%(热泵干燥技术的应用现状与发展展望) 重复字数: 57 总字数: 10385单篇最大重复字数: 36 总段落数: 2 前部重合字数:57疑似段落最大重合字数:57 疑似段落数:1 后部重合字数:0疑似段落最小重合字数:57 指 标:剽窃观点 剽窃文字表述 自我剽窃 一稿多投 过度引用 整体剽窃 重复发表 表格:0 脚注与尾注:0 1.5%(57) 3501120213 姜飞宇 金苏敏_第1部分(总3871字) 0%(0) 3501120213 姜飞宇 金苏敏_第2部分(总6514字)1. 3501120213 姜飞宇 金苏敏_第1部分总字数:3871相似文献列表 文字复制比:1.5%(57) 剽窃观点:(0)1热泵干燥技术的应用现状与发展展望0.9%(36) 刘贵珊;何建国;韩小珍;张海波; - 农业科学研究- 2006-03-25是否引证:否2刘凡-0912032076-0.7%(29) - 大学生论文联合比对库- 2013-06-18是否引证:否2. 3501120213 姜飞宇 金苏敏_第2部分总字数:6514相似文献列表 文字复制比:0%(0) 剽窃观点:(0)说明:1.指标是由系统根据学术论文不端行为的界定标准自动生成的。 2.本报告单仅对您所选择比对资源范围内检测结果负责。 3.Email:amlc /u/3194559873 /CNKI_kycx 毕业设计(论文)任务书课题名称10立方米热泵干燥箱设计院 (系)能源学院专 业热能与动力工程姓 名姜飞宇学 号3501120213起讫日期2016.3.1-2016.6.15指导教师金苏敏2016 年 3 月10日一、 毕业设计(论文)的内容和要求本毕业设计课题结合产品开发,要求学生有一定的工程能力,本课题选题合理,工作量饱满,机械制图要求比较高。学生通过本课题的设计可以综合大学4年所学知识的运用能力,特别是工程热力学、传热学、流体力学、制冷、热泵技术及相关专业课程的知识应用,同时有要有一定创新能力。本毕业设计资料比较欠缺,所设计要求学生进行设计计算、总装图和零部件图纸的设计,通过本毕业课题的设计有利于学生工作尽快适应工作岗位的要求设计。 主要设计参数:已知环境条件:干球温度:60 相对湿度:70%干燥箱容积:1立方米制冷剂:R22二、 毕业设计(论文)图纸内容及张数热泵干燥机的设计主要是单级压缩热泵循环中蒸发器和冷凝器的设计:1、查阅资料,要求查阅相关资料,中文文献25篇以上,英文文献5篇以上,了解冷除湿机工作原理,写文献综述,并作开题报告;2、环境工况及需求分析;3、热泵循环热力计算:4、室外换热器的设计计算;5、图纸设计,重点在总图和各换热器的设计图纸上。内容:1、零部件图纸(折1#图纸6张以上) 2、完成干燥机的设计说明书; 3、完成干燥机的设计;三、 实验内容及要求无四、 其他 无五、 参考文献1 制冷技术及其应用;2 制冷原理与设备;3 工程热力学;4 传热学;5. 流体力学六、毕业设计(论文)进程安排起讫日期设计(论文)各阶段工作内容备 注2015.12.1-2016.1.1文献综述、英文资料翻译2016.1.1-1.12开题报告2016.2.20-3.20系统的设计计算2016.3.21-5.31图纸设计2016. 6.1-写论文,准备答辩5热泵干燥系统的应用综述Li Jin Goh, Mohd Yusof Othman, Sohif Mat, Hafidz Ruslan, Kamaruzzaman Sopian太阳能研究所,大学学院马来西亚,43600马来西亚万宜,雪兰莪州,马来西亚文章信息文章历史:收到2011.2.17 修订表格2011.4.10 接收2011.7.5发布在网上2011.9.22关键词:热泵系统 干制品质量 空气质量 太阳能 性能系数摘要热泵系统应用在不同领域,主要包括空间加热,冷却和除湿(干燥)。为了提高热泵系统的性能,在改进热泵系统并将其与其他机理结合的方面做了大量的研究。热泵干燥器作为干燥系统,为了确保产品的质量,特别是粮食和农业产品,需要能够控制干燥温度、相对湿度、水分干燥量,干燥空气流速、干燥时间等因素,为了对改善热泵干燥器的性能,安装成本,和干燥性能等影响因素也应考虑在内,如空气流速,干燥温度和相对湿度,热泵干燥器各组成部件的性能,运行该系统需要的功率和投资回收期。通过改进热泵干燥器的,有助于提高产品质量降低烘干行业的经营成本。 .2011出版社有限公司版权所有目录1 简介4788。2 热泵4788。3 热泵干燥机4789. 3.1 太阳能辅助热泵干燥机(混合)4789 3.2 空气源热泵干燥机4790 3.3 地源热泵干燥机4791 3.4 微博辅助热泵干燥机(混合)4791 3.5 化学热泵干燥机4792 3.6 其他混合HPD系统47934 压缩机的性能47945 结论4795 参考文献47951. 简介 干燥保存产品,通过降低在材料中的水分的量,而冷冻保存产品,通过降低其温度至水的凝固点以下 1 。干燥技术允许提前收获,计划收获季节,更轻的重量方便运输和更少的空间来长时间不变质储存 2 。干燥方法包括常规干燥、太阳能、烘箱、脱水器和热泵系统。本文将讨论采用热泵系统来干燥各种产品。热泵是一种高效的加热和冷却发生系统。热泵在住宅中的应用可以看作是现有的制冷和空调系统。彼得Ritter von Rittinger开发和建立了第一个热泵 3 。不同用途的热泵系统有不同的设计,但热泵的主要组成部分仍由压缩机、冷凝器、膨胀阀、蒸发器和制冷剂组成。2. 热泵 为了提高热泵性能,人们进行了长时间的研究开发。热泵已经被改进为汽油机驱动热泵 4 ,地源热泵(GSHP) 5 、太阳能热泵 6 、光伏/热源(PV / T)热泵7,8,化学热泵9,10,除湿热泵11 13 。在热泵系统近年来的发展中能源效率,复合式系统及应用的分类是由Chua等人 27 精心制作的,如图1所示。热泵系统在太空加热和冷却、脱盐和干燥中有着广泛的应用。使用高压技术的主要优点是节能和能有效的控制干燥温度和空气湿度的能力。这创造了一个广泛干燥条件的可能性 19 。使用一个由热泵和干燥单元组合而成的热泵干燥装置,无论是潜热还是显热都可以从废气中回收,从而提高整体散热性能,并控制干燥器具有有利的空气入口条件 20 。研究报告表明,使用热泵干燥机和电阻式干燥机相比能节约40%的能源21,22。热泵干燥技术适用于高价值的产品,它有效的通过控制干燥的温度,湿度和空气流速瞬态等干燥条件以提高产品质量和降低干燥成本 23 。pendyala等人 24 和虢家等人 25 详细探讨了热泵干燥系统性能,建立数学模型。 太阳能辅助热泵的想法(SAHP)由Sporn和安布罗斯 28 首次提出。并且评估太阳能辅助热泵能在34.9的干燥温度和达到34.4%的相对湿度下测试水稻干燥 29 。其他研究人员也在不同气候区实验了太阳能辅助热泵并得出太阳能的光热实用程序和热泵系统的热特性 30、31 。研究玻璃板管PV/T利用卤水除热流体的集热性能;比光伏组件和太阳能集热器被并排放置情况下该除尘器具有更高的效率 32 。但另一项研究表明,随着冷光伏的冷却,更换冷却制冷剂会显示出更高的效率,因为盐水罐达到高温后将收集热量 7 。L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 1. Classification of heat pump development 27.3. 热泵干燥机 任何干燥过程的主要目标都是通过设计优化和控制条件生产一个具有最小的成本和最大生产量的干燥产品 14 。干燥是最耗能的单元操作,占了15%的工业能源利用 15 。在大部分工业干燥过程中,一大部分的能量被浪费掉了 16 。干燥过程在制造业生产的木材产品消耗总能量的70%,在制造成品纺织面料中消耗50%的总能量和在农场玉米生产中需要消耗超过60%的总能量 17 。干燥是一种能源消耗量大的操作,在发达国家的国家总能源消耗中占918 25% 。因此,使用不同的技术提高干燥设备的能源效率降低产品单位能耗是有必要的 17 。在日本 26 ,模拟研究区使用污水作为冷却/加热系统的能源来源显示,与传统的空气源热泵,污水源热泵相比可以帮助减少能源消耗34%,降低二氧化碳排放量(二氧化碳)75%和控制的氮氧化物的生成68% 26 。许多研究者赞同使用热泵干燥机来提高干燥质量和营造一系列的精确条件 82,83 。3.1。太阳能辅助热泵干燥机(混合) 混合太阳能技术和热泵系统是为了提高光伏性能,并收集来自光伏的热量。光伏/集热器与热泵的蒸发器相结合,已由由杰等人完成 8 。saensabai和prasertsan比较了5中不同配置的热泵干燥装置 77 。热泵系统的性能系数可以高达4-5,但要达到最佳性能,必须根据工作流体的变化特性来改变系统的结构 78-80 。据saensabai和prasertsan,凝汽器是热泵干燥系统中的一个重要组成部分 81 。他们还发现,通过增加线圈深度来改变制冷剂的流动路径可以将其性能系数提高到27.6%和12.3%(图2)。L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 2. Classification of heat pump dryers 10,76. 容量为1.5千瓦,生产热水和热空气来干燥农产品的太阳能热泵干燥机(SHPD)的构造如图3所示。空气流由太阳能收集器和冷凝器干燥。如果干燥温度较高,必须使用一种固定在冷凝器后的辅助加热器,这是由所需的干燥器入口温度和气象条件的幅度确定。在绿豆的农业产品干燥调查中。空气质量流量设定为0.06 kg/s,产品分别在45,50和55 的干燥温度下进行干燥。在此条件下得到相应实验值的性能系数为6.45。通过研究,具体的水分提取率(SMER)的下降与干燥时间成正比。30kg样品的单位能耗除湿量为0.97,而重量为20kg和5kg时其单位能耗除湿量分别为0.65和0.16,分别见(表1)。L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 3. Solar assisted heat pump dryer 74.表1 ,不同产品的热泵干燥研究应用产品干燥类型干燥温度()农业小花 33 辣椒 34 绿色香辣椒 36 君子兰的叶 37 香菇 38 橄榄叶 39 水稻 40 柠檬 41 番茄 22 澳洲坚果 55 红辣椒 57 粮食(谷物) 61 蔬菜 62 专业作物 66 薄荷叶 72 绿豆 74 双凝汽器蒸汽压缩循环真空热泵双凝汽器蒸汽循环真空热泵双凝汽器蒸汽压缩循环太阳能辅助蒸汽压缩循环蒸汽压缩循环双凝汽器蒸汽压缩循环空气源热泵大气压冷冻式热泵空气源热泵空气源热泵热泵流化床地源热泵太阳能热泵6050 - 65354060506553.4330.8 - 34604050-3到2030,4540,45,5040,45,50水果葡萄 42 苹果 43 苹果 44 番石榴 44 番石榴 45 香蕉 45 木瓜 46 芒果 46 香蕉 47 豌豆 48 山榄果 49 油桃 59 蒸汽压缩循环蒸汽压缩循环双冷凝器的蒸汽压缩循环双冷凝器的蒸汽压缩循环双级热泵双级热泵双冷凝器的蒸汽压缩循环双冷凝器的蒸汽压缩循环双冷凝器的蒸汽压缩循环双冷凝器的蒸汽压缩循环空气源热泵50,60406060-8030353055555020406025草本植物生姜 35 犹太人的锦葵 1 薄荷4555 1 香菜 1 月桂(湾)叶 75 蒸汽压缩循环空气流通中的蜂窝式热泵地源热泵40,6045-5540海洋马鲭鱼 50 2030食品奶酪 51 即食食品(蔓越莓+土豆) 52 鸡肉 58 低温热泵干燥 二氧化碳热泵干燥机过热蒸汽与热泵1210到3055木材木材 53 木屑 54 木材 56 木材 60 纸 65 空气源热泵单级吸收式热泵空气源热泵空气源热泵空气源热泵82.2 - 93.340-其他泡沫橡胶 63 颗粒食品生物技 64 陶瓷 67 蛋白质 68 污泥 69 羊毛 70 羊毛 71 衣服 73 空气源热泵冰箱与流化床热泵化学热泵大气压冷冻式热泵太阳能热泵空气源热泵空气源热泵空气源热泵-20到5075-535606080-1303.2 空气源热泵干燥机 空气源热泵干燥机采用蒸发器作为除湿机和冷凝器作为加热器的常规热泵干燥系统。prasertsan和saensabai模拟实验了5种不同布局的空气源热泵 77 。另一种空气源热泵干燥机已由Pal,Khan和Mohanty建号用于农产品研究 36 。研究比较了用于农产品的流化床干燥器和空气源热泵干燥器,如图4所示。流量测定的研究结果表示温度是45,50,55时流量分别为0.5、1和1.5米/秒。比较表明,在温度高于50时空气源热泵干燥机比流化床干燥具有更好的性能.热泵干燥机的相对湿度为9.414.6%。L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 4. Air source heat pump dryer 33.3.3 地源热泵干燥机 美国环境保护署(USEPA)估计,相比于传统的电加热和空调,空气源热泵可以减少能源消耗72%,地热泵可以减少高达44%的能源消耗 84 。对于美国大部分地区,地热泵是最节能的供热和冷却建筑物的手段 85 。在欧洲,成百上千的家庭热泵装置被使用,并且该技术是尝试,试验和可用的 86 。图5显示了地源热泵干燥器 87 。Fig. 5. Ground source heat pump dryer 87.3.4 微波辅助热泵干燥机(混合) 微博辅助热泵干燥系统是一种混合式热泵干燥技术。劳顿 88 和梅塔克萨斯和梅瑞狄斯 89 贾 90 等人在文献中第一个提出合并HPS和微波干燥研究。并对热泵混合式微波干燥系统的整体性能进行了测试。如图6所示,在实验中构建了一个5千瓦的热泵压缩机和10千瓦的微波功率的原型干燥器。研究结果表明,精心设计的热泵辅助微波干燥在能源消耗上比得上传统的对流干燥。Fig. 6. Heat pump assisted microwave dryer 90.3.5 化学热泵干燥机 在提供冷却和加热方面上,虽然热泵是研究和开发的热门,但是化学热泵在最近几年也获得较多关注 91 - 93 。热电联产通过化学方式吸热和释放能量。热电联产系统利用可逆化学反应中储存的化学物质改变热能的温度水平 94 。这些重要的化学物质吸收和释放热能 95 。各种化学物质通过化学反应应用于热电联产中,例如,水系统(氢氧化物/氧化物、水合盐/盐或盐的水合物),氨系统(氨/氨或胺络合物盐,盐)、二氧化硫(亚硫酸盐/氧化系统,焦亚硫酸)、二氧化碳(碳酸钙/氧化系统、氧化钡、碳酸钡)、氢系统(氢化物或金属氢化/脱氢等),被提出作为工质 10 。沙罗诺夫和阿里斯托夫通过模拟理想化学循环和吸附式热泵提出热力分析和循环效率 96 。热电联产系统的类别说明如图1,图7展示了一个简单的热电联产循环。Saito,Kameyama 和Yoshida研究了用于升级低级能源的催化剂辅助热电联产系统。该催化剂辅助热电联产产生约200C高温,0.98的反应率,氢到丙酮的反应率为5和最大性能系数为0.36。图8显示了一个连续式液体燃气热电联产,金属氢化物的分解提供了在高温下发生的放热反应,低温下发生的吸热反应 97 。图9显示了一个热电联产机使用CaO/水/ Ca(OH)2的反应在干燥系统中强化传热 98 。Fig. 7. Simple CHP cycle 10.Fig. 8. Catalyst-assisted CHP 97.Fig. 9. CHP dryer 98.3.6 其他混合液压泵系统 高压干燥器有多种组合或混合系统,如热泵混合太阳能、微波、无线射频或红外线等技术,提供不同的性能和要求。通过添加一些设备或某些参数的配置,也有助于改进干燥系统。锡兰通过PID控制研究猕猴桃,香蕉,鳄梨的干燥现象 99 。实验运行平均风速0.37米/秒,空气干燥40C。图10展示PID控制的热泵干燥机。研究结果表明,通过增加产品或者产品中的水分从而提高单位能耗除湿量。 另一种热泵干燥混合系统由铋等通过结合太阳能和地源热泵系统制作,如图11 100 。Fig. 10. Heat pump with PID control.Fig. 11. Solar-ground source heat pump system 100. 除湿热泵比常规热泵在除湿(干燥)和太空加热和冷却控制中具有更好的性能 11,101 。图12展示了一个除湿热泵干燥器 102 。、Fig. 12. Desiccant heat pump dehumidifier 102. 太阳能辅助化学热泵干燥机已由大卫在马来西亚国立大学建成且在马来西亚的天气条件下进行测试 103 。总要求保持干燥温度在55C下总能量是60 kw/h。太阳能化学热泵系统提供51 kw/h,占总能量需求的85%,其余15%的能量由辅助加热器提供。图13展示了太阳能辅助化学热泵干燥系统。Fig. 13. Solar assisted chemical heat pump dryer.4 压缩机的性能 虽然提高热泵系统将提高干燥机的状况但作为任何热泵系统中的主要组件的压缩机的性能也是不可忽视的。改善压缩机性能可降低功率输入或要求。冷却是改善压缩机性能的最有效的方法之一。图14显示了冷却系统改为一个密封的压缩机 104 。本研究采用2个小型热管做压缩机的冷却。热管(a)作为压缩机气缸盖的热传输,压缩机底部的蓄油池到压缩机最热的区域。热管(b)将热量从油输送到压缩机的外部。 使用不同的制冷剂也会影响整个热泵系统的性能。比较几种不同的制冷剂的研究已经完成 105 106 。Fig. 14. Compressor cooling with miniature heat pipe.5 结论 热泵是一种能有效地产生空间加热和制冷的技术。在本文中,可以看出,热泵干燥器启动与空气源热泵比改进的混合太阳能集热器,化学,地源和干燥剂的比较。该系统的发展对于干燥技术的应用与发展来说,减少对于电力生产的化石燃料的依赖,并减少电力输入干燥所需要的能源,。提高热泵系统的性能系数是非常重要的,但单位能耗除湿量的性能和干燥条件也不可忽视。在节能系统的开发中,系统成本、经济性、系统效率和性能、系统需求和系统对于化石燃料的依赖都是是很重要的。混合动力技术可能会增加系统性能,但也会大大增加成本。Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Contents lists available at SciVerse ScienceDirectRenewable and Sustainable Energy Reviewsjo ur n al hom ep a ge: /locate/rserReview of heat pump systems for drying applicationLi Jin Goh, Mohd Yusof Othman, Sohif Mat, Hafidz Ruslan, Kamaruzzaman SopianSolar Energy Research Institute, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysiaa r t i c l e i n f oArticle history:Received 17 February 2011Received in revised form 10 April 2011Accepted 5 July 2011Available online 22 September 2011Keywords:Heat pump systemsQuality of dried productsQuality of airSolar energyCOPa b s t r a c tHeat pump system has been research and developed for different applications and mostly in spaceheating, cooling and dehumidifying (drying). To improve the performance of the heat pump system,research on modifying heat pump system and combining to other mechanism has been done widely.Heat pump dryer is proven as drying system that ensure the products quality especially food and agri-culture products, able to control drying temperature, relative humidity, moisture contain extraction,drying air velocity, drying period and etc. Factor to be concern in improving a heat pump dryer includesthe installation cost, drying performance such as air velocity, drying temperature and relative humidity,performance of the component hybrid to heat pump dryer, power required to run the system and alsopayback period. By improving the development of heat pump dryer will help increase the product qualityand reducing operation cost of drying industry. 2011 Elsevier Ltd. All rights reserved.Contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47882. Heat pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47883. Heat pump dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47893.1. Solar assisted (hybrid) heat pump dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47893.2. Air source heat pump dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47903.3. Ground source heat pump dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47913.4. Heat pump assisted (hybrid) microwave drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47913.5. Chemical heat pump dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47923.6. Other hybrid HPD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47934. Compressor performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47945. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4795References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47951. IntroductionDrying preserves the product by lowering the amount of mois-ture in the material, while freezing preserves the product bylowering its temperature below the freezing point of water 1.The drying technique permits early harvest, planning the harvestseason, lighter weight for transportation and less space for longtime storage without deterioration 2. Drying methods includeconvention, solar, oven, dehydrator and heat pump system. Dry-ing of various products using heat pump system will be discussedin this paper. Heat pump is an efficient heating and cooling gener-ating system. Application of heat pump in residential can be seenas existing refrigeration and air conditioning systems. Peter Rittervon Rittinger develops and builds the first heat pump 3. There arevarious designs of heat pump system for different application butthe main components of heat pump still made up of compressor,condenser, expansion valve, evaporator and refrigerant.2. Heat pumpHeat pump had been researched and developed for a long timeto improve the performance. Heat pump had been modified to gas-engine-driven heat pump 4, ground source heat pump (GSHP) 5,solar heat pump 6, photovoltaic/thermal (PV/T) heat pump 7,8,chemical eat pump 9,10, and desiccant heat pump 1113. Clas-sification of recent development in heat pump system is elaboratein energy efficiency, hybrid system and applications by Chua et al.27 as shown in Fig. 1. Applications for heat pump systems arewidely used in space heating and cooling, desalination and dry-ing. The main advantages of using HP technology are the energy1364-0321/$ see front matter 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.rser.2011.07.072L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 47964789Fig. 1. Classification of heat pump development 27.saving potential and the ability to control drying temperature andair humidity. This creates the possibility of a wide range of dryingconditions 19. Using a heat pump dryer, which is a combination ofheat pump and drying unit, both the latent heat and sensible heatcan be recovered from the exhaust air, thus improving the overallthermal performance and yielding effective control of air condi-tions at the inlet of the dryer 20. Energy savings of about 40%were reported using heat pump dryers as compared to electricalresistance dryers 21,22. The heat pump drying technology is suit-able for high value products and its ability to produce controlledtransient drying conditions in terms of temperature, humidity, andair velocity has been investigated in order to improve product qual-ity and reduce drying cost 23. A detailed mathematical model toinvestigate the performance of a heat-pump assisted drying systemwas reported by Pendyala et al. 24 and Xiguo Jia et al. 25.The idea of solar assisted heat pump (SAHP) was first intro-duced by Sporn and Ambrose 28. Evaluation of rice drying hadbeen tested with a SAHP dryer with 34.9C of drying temperatureand achieves 34.4% of relative humidity 29. Other researchers hadalso conducted experimental works on SAHP in different climateregion that contributed to the photo thermal utility of solar energyand the thermal performance of heat pump system 30,31. Saitohstudied the performance of a glazed sheet-and-tube PV/T collectorusing brine as the heat removal fluid; this collector was shown tohave higher exergy efficiency than the case with a PV module and asolar thermal collector being placed side by side 32. But anotherresearch suggest that replace refrigerant with brine as cooling tothe photovoltaic (PV) would show higher efficiency on the PV sincethe brine water tank would reach high temperature after collectingthe heat 7.3. Heat pump dryerThe main objective of any drying process is to produce a driedproduct of desired quality at a minimum cost and maximumthroughput by optimizing the design and operating conditions 14.Drying is one of the most energy intensive unit operations that eas-ily account for up to 15% of all industrial energy utilizations 15.In many industrial drying processes, a large fraction of energy iswasted 16. Drying process consumes up to 70% of the total energyin manufacturing wood products, 50% of the total energy consump-tion in the manufacturing of finished textile fabrics and over 60%of the total energy needed for on farm corn production 17. Dry-ing is an energy-intensive operation consuming 925% of nationalenergy in the developed countries 18. Thus, to reduce energy con-sumption per unit of product moisture, it is necessary to scrutinizedifferent methodologies to improve the energy efficiency of thedrying equipment 17. In Japan 26, a simulation study of districtcooling/heating systems using sewage water as an energy sourceshows that, compared with conventional air-source heat pumps,wastewater source heat pumps could help reducing energy con-sumption by 34%, lowering the emission of carbon dioxide (CO2) by68% and controlling the generation of nitrogen oxides (NOx) by 75%26. Many researcher has agreed on using heat pump dryer helpimprove drying quality and produce a range of precise condition82,83.3.1. Solar assisted (hybrid) heat pump dryerHybrid solar technology and heat pump system is to improve PVperformance and collect heat from the PV. A PV/T collector com-bines with heat pumps evaporator had been done by Jie Ji et al.8. Saensabai and Prasertsan compare on 5 different componentarrangements in heat pump dryer configuration 77. COP of heatpump can achieve as high as 45 but to achieve optimum perfor-mance, the system configuration must be changed according to thechanging property of the working fluid 7880. According to Saens-abai and Prasertsan, condenser is a vital component in a heat pumpdrying system 81. They also found that by changing the refriger-ant flow path can improve COP to 27.6% and 12.3% by increasingcoil depth (Fig. 2).A solar heat pump dryer (SHPD) with 1.5 kW capacity of com-pressor that produced hot water and hot air for agriculture productdrying was constructed as shown in Fig. 3. Air flow is dried by solarcollector and condenser. An auxiliary heater is fixed after condenserand will be used if higher drying temperature is required whichwas determined by the magnitude of the desired dryer inlet tem-perature and the meteorological conditions. Agriculture product4790L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 2. Classification of heat pump dryers 10,76.dried in the research is green bean. Mass flow rate of air is set to0.06 kg/s and the product was dried under drying temperature of45C, 50C and 55C. The corresponding experimental value COPof 6.45 is obtained under this condition. From the research, spe-cific moisture extraction rate (SMER) declined with proportional todrying time. An SMER of 0.97 is observed for 30 kg sample, whereasSMER values of 0.65 and 0.16 are obtained for the weights 20 kg and5 kg, respectively (Table 1).3.2. Air source heat pump dryerAir source heat pump dryer uses normal heat pump system withevaporator as dehumidifier and condenser as heater. Prasertsan andSaensabai experimented on 5 different configurations of air sourceheat pump by simulation 77. Another air source heat pump dryerhad been constructed and study with agriculture product by Pal,Khan and Mohanty 36. A research done on comparing a fluid bedFig. 3. Solar assisted heat pump dryer 74.L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 47964791Table 1Various heat pump dryer research on different products.Application Product Drying system Drying temperature (C)Agriculture Broccoli Floret 33 Dual condenser vapor compression cycle 60Chili 34Vacuum heat pump5065Green sweet pepper 36Dual condenser vapor cycle 35Kaffir leaf 37 4060Shitake mushroom 38Vacuum heat pump 5065Olive leaf 39 Dual condenser vapor compression cycle 53.43Rice 40 Solar assisted vapor compression cycle 30.834Lemon 41 Vapor compression cycle 60Tomato 22Dual condenser vapor compression cycle4050Macadamia nut 55 Air source heat pump 50Red pepper 57Atmospheric freezer heat pump 3 to 20Grain (cereal) 61 Air source heat pumpVegetables 62 Air source heat pumpSpecialty crops 66 Heat pump with flow bed 3045Mint leave 72Ground source heat pump 40, 45, 50Green bean 74Solar heat pump 40, 45, 50Fruit Grape 42 Vapor compression cycle 5060Apple 43 Vapor compression cycle 40Apple 44Dual condenser vapor compression cycle6080Guava 44 Dual condenser vapor compression cycle 6080Guava 45 Two stage heat pump 3035Banana 45 Two stage heat pump 3035Papaya 46 Dual condenser vapor compression cycle 55Mango 46Dual condenser vapor compression cycle55Banana 47 50Peas 48 Dual condenser vapor compression cycle 2060Sapota 49 Dual condenser vapor compression cycle 4060Nectarine 59 Air source heat pump 25HerbsGinger 35Vapor compression cycle4060Jews mallow 1Heat pump with honeycomb for homogeneousair distribution4555Spearmint 1Parsley 1Laurel (Bay) leaves 75Ground source heat pump 4050Marine Horse Mackerel 50 2030Food Cheese 51 Low temperature heat pump drying 12Instant food (cranberry + potato) 52 CO2heat pump dryer 10 to 30Chicken meat 58 Superheated steam with heat pump 55Wood Wood 53 Air Source heat pump 82.293.3Wood chip 54Single-stage absorption heat pump 4043Wood 56 Air Source heat pump Timber 60 Air source heat pump Paper 65Air source heat pumpOtherFoam rubber 63 Air source heat pump Granular food and biotechnological 64 Freezer with fluidized bed heat pump 20 to 50Ceramic 67 Chemical heat pump 75Protein 68 Atmospheric freezer heat pump 5Sludge 69 Solar heat pump 35Wool 70 Air Source heat pump 60Wool 71 Air Source heat pump 60Clothes 73 Air Source heat pump 80130dryer and an air source heat pump dryer using agriculture productas shown in Fig. 4. The mass flow rate determined in the researchare 0.5, 1.0 and 1.5 m/s while the temperature are 45, 50, 55C.The comparison shows that air source heat pump dryer give betterperformance than fluid bed with drying temperature above 50C.Relative humidity of heat pump dryer gives 9.414.6%.3.3. Ground source heat pump dryerThe US Environmental Protection Agency (USEPA) estimatedthat geothermal heat pumps can reduce energy consumption byup to 44% compared to air-source heat pumps and up to 72%compared to conventional electrical heating and air conditioning84. For most areas of the US, geothermal heat pumps are themost energy-efficient means of heating and cooling buildings 85.Across Europe, hundreds of thousands of domestic heat pump unitsare in use, and the technology is tried, tested and reliable 86. Fig. 5shows a ground-source heat pump dryer 87.3.4. Heat pump assisted (hybrid) microwave dryingHeat pump assisted microwave system is one of the hybridsystems with heat pump in drying technology. The first studieson combining HPs and microwave drying were proposed in theliterature by Lawton 88, and Metaxas and Meredith 89. Jiaet al. 90 had tested on overall performance of heat pump hybridmicrowave drying system. A prototype dryer with 5 kW of heatpump compressor and 10 kW microwave power was constructedin the experiment as shown in Fig. 6. The results of the studyindicated that with careful design heat pump assisted microwave4792L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 4. Air source heat pump dryer 33.drying is comparable to conventional convective drying in energyconsumption.3.5. Chemical heat pump dryerAlthough heat pump is favored to be research and developedas to provide cooling and heating, chemical heat pump had gainattention in recent years 9193. CHP absorbs energy via endother-mic and release energy via exothermic in the form of chemical.CHP systems utilize the reversible chemical reaction to changethe temperature level of the thermal energy, which stored bychemical substances 94. These chemical substances are impor-tant in absorb and release heat energy 95. Various chemicalsubstance can be use in CHP for chemical reaction, for examples,water system (hydroxide/oxide, salt hydrate/salt or salt hydrate),ammonia system (ammoniate/ammoniate or salt, amine complexwith salt), sulfur dioxide system (sulphite/oxide, phyrosulphate),carbon dioxide system (carbonate/oxide, barium oxide/bariumcarbonate), hydrogen system (hydride or metal, hydrogenation/Fig. 5. Ground source heat pump dryer 87.dehydrogenation), etc. has been proposed as working medium10. Sharonov and Aristov had performed thermodynamic analysisand cycle efficiency on an ideal cycle of chemical and adsorp-tion heat pumps by simulations 96. Categories of CHP systemshad been illustrate in Figs. 1 and 7 shows a simple CHP cycle.A catalyst-assisted CHP was developed by Saito, Kameyama andYoshida for upgrading low-level energy 97. This catalyst-assistedFig. 6. Heat pump assisted microwave dryer 90.Fig. 7. Simple CHP cycle 10.L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 47964793Fig. 8. Catalyst-assisted CHP 97.Fig. 9. CHP dryer 98.CHP produced high temperature of about 200C, rate of reactionof 0.98 and rate of hydrogen to acetone as 5 with the maximumCOP of 0.36. Fig. 8 shows a of continuous type liquidgas CHPwhere high temperature of exothermic reaction is produced andlow temperature of endothermic reaction heat are supplied fordecomposition of metal hydride 97. Fig. 9 shows a CHP dryerusing CAO/H2O/Ca(OH)2reaction in heat enhancement for dryingsystems 98.Fig. 10. Heat pump with PID control.3.6. Other hybrid HPD systemsThere are several of combinations or hybrid system of HP dryerwith other technology such as heat pump hybrid solar, microwave,radio frequency, or infrared that provides different performancesand requirements. By adding some equipment or configuration ofsome parameter will also help improved drying system. Ceylanstudy the performances on kiwi, banana and avocado drying withPID control heat pump 99. The experiment runs with mean airvelocity of 0.37 m/s and air drying temperature of 40C. Fig. 10shows the heat pump dryer wit PID control. Result of the researchshows that SMER improved with the increase of products or mois-ture content in the products.Another heat pump dryer hybrid done by Bi et al. by combiningsolar and ground-source to heat pump system as shown in Fig. 11100.Desiccant heat pump shows better performance compare toconvention heat pump in term of dehumidifier (drying) and spaceFig. 11. Solar-ground source heat pump system 100.4794L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 4796Fig. 12. Desiccant heat pump dehumidifier 102.heating and cooling control 11,101. Fig. 12 shows a desiccant heatpump dryer 102.Solar assisted chemical heat pump dryer has been constructedby Daud in Universiti Kebangsaan Malaysia and tested underFig. 14. Compressor cooling with miniature heat pipe.Malaysia weather condition 103. The total energy requirement tomaintain drying temperature of 55C is 60 kWh. The solar chemicalheat pump system contributes 51 kWh which is 85% of total energyrequired and the rest of 15% energy provided by auxiliary heater.Fig. 13 shows the solar assisted chemical heat pump dryer system.4. Compressor performanceThough improving heat pump system will improve the dryercondition but compressor performance is also innegligible sincecompressor is the main component in any heat pump system.Improving the compressor performance may reduce power inputor required. One of the most efficiency ways to improve compressorperformance is by cooling. Fig. 14 shows the cooling system modi-fied to a hermetic compressor 104. The research use 2 miniatureheat pipes to do the cooling in compressor. Heat pipe (a) does theFig. 13. Solar assisted chemical heat pump dryer.L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 47964795heat transportation from the compressor cylinder head that is thehottest compressor region to the oil reservoir in the bottom part.The heat pipe (b) transports the heat from the oil to the outside ofthe compressor.Using different refrigerant will also affect the performance of thewhole heat pump system. Several studies on comparing differentrefrigerant had been done 105,106.5. ConclusionsHeat pump is a technology that can produce space heating andcooling efficiently. In this paper, it can be seen that heat pumpdryer starts with air source heat pump than improved by hybridwith solar collector, chemical, ground-source and desiccant. Thesystems developments improve by reducing the depending onelectricity produce by fossil fuel and also reduce power inputrequired for drying application. Improving COP of heat pump sys-tem is important but performance of SMER and drying conditionalso innegligible. In development of an energy saving system, sys-tem cost, economical factor, system efficiency and performance,system demand and system dependency of fossil fuel is important.Hybrid more technology might increase the system performancebut will also increase the cost greatly.References1 Fatouh M, Metwally MN, Helali AB, Shedid MH. Herbs drying using a heatpump dryer. Energy Conversion and Management 2006;47:262943.2 Dandamrongrak R, Young G, Mason R. Evaluation of various pre-treatment forthe dehydration of banana and selection of suitable drying models. Journal ofFood Engineering 2002;55:13946.3 Banks, David L. An introduction to thermogeology: ground source heating andcooling; 2008, ISBN 978-1-4051-7061-1.4 Lian ZW, Park SR, Huang W, Baik YJ, Yao Y. Conception of combination of gas-engine-driven heat pump and water-loop heat pump system. InternationalJournal of Refrigeration 2005;28:8109.5 Omer AM. Ground-source heat pumps systems and applications. Renewableand Sustainable Energy Reviews 2008;12:34471.6 Georgiev A. Testing solar collectors as an energy source for a heat pump.Renewable Energy 2008;33:8328.7 Jie J, Gang P, Chow TT, Liu KL, He HF, Lu JP, et al. Experimental study ofphotovoltaic solar assisted heat pump system. Solar Energy 2008;82:4352.8 Jie J, He HF, Chow TT, Gang P, Wei H, Liu KL. Distributed dynamic modelingand experimental study of PV evaporator in a PV/T solar-assisted heat pump.International Journal of Heat and Mass Transfer 2009;52:136573.9 Sharonov VE, Aristov Y. Chemical and adsorption heat pumps: comments onthe second law efficiency. Chemical Engineering Journal 2008;136:41924.10 Wongsuwan W, Kumar S, Neveu P, Meunier F. A review of chemicalheat pump technology and applications. Applied Thermal Engineering2001;21:1489519.11 Aynur TN, Hwang YH, Radermacher R. Field performance measurements ofa heat pump desiccant unit in heating and humidification mode. Energy andBuildings 2010;42:67883.12 Giovanni A, Francesco M, Carlo R, Maurizio S. Experimental investigationto optimise a desiccant HVAC system coupled to a small size cogenerator.Applied Thermal Engineering 2010;31:50612.13 Dai YJ, Wang RZ, Zhang HF, Yu JD. Use of liquid desiccant cooling to improvethe performance of vapour compression air conditioning. Applied ThermalEngineering 2001;21:1185202.14 Sun L, Islam MR, Ho JC, Mujumdar AS. A diffusion model for drying of a heatsensitive solid under multiple heat input modes. Bioresource Technology2005;96:155160.15 Chua KJ, Mujumdar AS, Hawlader MNA, Chou SK, Ho JC. Batch drying of bananapieces effect of stepwise change in drying air temperature on drying kineticsand product color. Food Research International 2001;34:72131.16 Ogura H, Yamamoto T, Otsubo Y, Ishida H, Kage H, Mujumdar AS.A control strategy for chemical heat pump dryer. Drying Technology2005;23:1189203.17 Mujumdar AS. Handbook of industrial drying. 2nd ed. New York, USA: MarcelDekker Inc.; 1987.18 Mujumdar AS. Handbook of industrial drying, vol. 2. New York, NY: MarcelDekker Inc.; 2005. p. 124172.19 Claussen IC, Ustad TS, Strommen I, Walde PM. Atmospheric freeze drying areview. Drying Technology 2007;25:95767.20 Sarkar J, Bhattacharyya S, Gopal R, Transcritical M. CO2heat pump dryer: Part1. Mathematical model and simulation. Drying Technology 2006;24:158391.21 Rossi SJ, Neues LC, Kicokbusch TG. Thermodynamic and energetic evaluationof a heat pump applied to the drying of vegetables. In: Mujumdar AS, editor.Drying 92. Elsevier Science; 1992. p. 14758.22 Queiroz R, Gabas AL, Telis VRN. Drying kinetics of tomato by using elec-tric resistance and heat pump dryers. Drying Technology 2004;22(7):160320.23 Pal US, Khan MK. Calculation steps for the design of different components ofheat pump dryers under constant drying rate condition. Drying technology2008;26:86472.24 Pendyala VR, Devotta S, Patwardhan VS. Heat-pump assisted dryer.Part 1: Mathematical model. International Journal of Energy Research1990;14:47992.25 Xiguo J, Jolly P, Cements S. Heat-pump Assisted continuous drying. Part2: Simulation results. International Journal of Energy Research 1990;14:77182.26 Baek NC. Development of off-peak electric water heater using heat pump(1999-E-ID01 P11); 2001. p. 37.27 Chua KJ, Chou SK, Yang WM. Advances in heat pump systems: a review.Applied Energy 2010;87(12):361124.28 Sporn P, Ambrose ER. The heat pump and solar energy. In: Proceedings of theworld symposium on applied solar energy. 1955. p. 15970.29 Best R, Soto W, Pilatowsky I, Gutierrez LJ. Evaluation of a rice drying systemusing a solar assisted heat pump. Renewable Energy 1994;5(14):4658.30 Cervantes JG, Torres-Reyes E. Experiments on a solar-assisted heat pumpand an exergy analysis of the system. Applied Thermal Engineering2002;22:128997.31 Kuang YH, Wang RZ, Yu LQ. Experimental study on solar assisted heatpump system for heat supply. Energy Conversion and Management2003;44:108998.32 Saitoh H, Hamada Y, Kubota H. Field experiments and analyses on a hybridsolar collector. Applied Thermal Engineering 2003;23:2089105.33 Icier F, Colak N, Erbay Z, Kuzgunkaya EH, Hepbasli A. A comparative studyon exergetic performance assessment for drying of Broccoli Florets in threedifferent drying systems. Drying Technology 2010;28:193204.34 Artnaseaw A, Theerakulpisut S, Benjapiyaporn C. Development of a vacuumheat pump dryer for drying chilli. Biosystems Engineering 2009;105:1308.35 Phoungchandang S, Saentaweesuk S. Effect of two stage, tray andheat pump assisted-dehumidified drying on drying characteristicsand qualities of dried ginger. Food and Bioproducts Processing 2010,doi:10.1016/j.fbp.2010.07.006.36 Pal US, Khan MK, Mohanty SN. Heat pump drying of green sweet pepper.Drying Technology 2008;26:158490.37 Phoungchandang S, Srinukroh W, Leenanon B. Kaffir lime leaf (Citrus hystricDC.) drying using tray and heat pump dehumidified drying. Drying Technol-ogy 2008;26:16029.38 Artnaseaw A, Theerakulpisut S, Benjapiyaporn C. Drying characteristics ofShiitake mushroom and Jinda chili during vacuum heat pump drying food andbioproducts processing. Food & Bioproducts Processing 2009;88:10514.39 Icier F, Erbay Z. Optimization of drying of olive leaves in a pilot-scale heatpump dryer. Drying Technology 2009;27:41627.40 Best R, Cruz JM, Gutierrez J, Soto W. Experimental results of a solar assistedheat pump rice drying system. Renewable Energy 1996;9(14):6904.41 Chen HH, Hernandez CE, Huang TC. A study of the drying effect on lemonslices using a closed-type solar dryer. Solar Energy 2005;78:97103.42 Vazquez G, Chenlo F, Moreira R, Cruz E. Grape drying in a pilot plane withheat pump. Drying Technology 1997;15(34):899920.43 Aktas M, Ceylan I, Yilmaz S. Determination of drying characteristics of applesin a heat pump and solar dryer. Desalination 2009;239:26675.44 Hawlader MNA, Perera CO, Tian M. Properties of modified atmosphere heatpump dried foods. Journal of Food Engineering 2006;74:392401.45 Chua KJ, Mujumdar AS, Chou SK, Hawlader MNA, Ho JC. Convective dry-ing of bananas, guava, and potato pieces: effect of cyclical variations ofair temperature on drying kinetics and color change. Drying Technology2000;18(45):90736.46 Teeboonma U, Tiansuwan J, Soponronnarit S. Optimization of heat pump fruitdryers. Journal of Food Engineering 2003;59:36977.47 Dandamrongrak R, Young G, Mason R. Evaluation of various pre-treatmentsfor the dehydration of banana and selection of suitable drying models. Journalof Food Engineering 2002;55:13946.48 Rahman MS, Perera CO, Thebaud C. Desorption isotherm and heat pump dry-ing kinetics of peas. Food Research International 1998;30(7):48591.49 Jangam SV, Joshi VS, Mujumdar AS, Thorat BN. Studies on dehydration ofsapota (Achras zapota). Drying Technology 2008;26:36977.50 Qi LS, Chang HX, Zhao Y, Zhao JL, Xiang YW. Drying characteristics of horsemackerel (Trachurus japonicus) dried in a heat pump dehumidifier. Journal ofFood Engineering 2007;84:1220.51 frica CP, Simal S. Heat pump drying kinetics of a pressed type cheese. FoodScience and Technology 2010;44(2):48994.52 Odilio AF. Combined innovative heat pump drying technologies and newcold extrusion techniques for production of instant foods. Drying Technology2002;20(8):154157.53 Minea V. Heat pump for wood drying: new developments and preliminaryresults. In: Proceedings of the 14th international drying symposium. 2004. p.8929.54 Lostec BL, Galanis N, Baribeault J, Millette J. Wood chip drying with an absorp-tion heat pump. Energy 2008;33:50012.4796L.J. Goh et al. / Renewable and Sustainable Energy Reviews 15 (2011) 4788 479655 Blarcom AV, Mason RL. Low humidity drying of macadamia nuts. In: Pro-ceedings of the 4th Australasian conference on tree and nut crops. 1988. p.23948.56 Alves FO, Eikevik T, Mulet A, Garau C, Rossello C. Kinetics and mass trans-fer during atmospheric freeze drying of red pepper. Drying Technology2007;25:115561.57 Prasertsan S, Saen-saby P. Heat pump drying of agricultural materials. DryingTechnology 1998;16(1 and 2):23550.58 Nathakaranakule A, Kraiwanichkul W, Soponronnarit S. Comparative study ofdifferent combined superheated-steam drying techniques for chicken meat.Journal of Food Engineering 2007;80:102330.59 Sunthonvit N, Srzednicki G, Craske J. Effects of drying treatments on thecomposition of volatile compounds in dried nectarines. Drying Technology2007;25:87781.60 Geeraert B. Air drying by heat pumps with special reference to timber drying.In: Camatini E, Kester T, editors. Heat pumps and their contribution to energyconservation. Leydon: Noordhoff; 1976. p. 21946.61 Cunney MB, Williams P. An engine-driven heat pump applied to grain dryingand chilling. In: Proceedings second international symposium on the largescale applications of heat pumps. 1984. p. 28394.62 Rossi SJ, Neues LC, Kicokbusch TG. Thermodynamic and energetic evaluationof a heat pump applied to the drying of vegetables. In: Mujumdar AS, editor.Drying92. Elsevier Science; 1992. p. 14758.63 Clements S, Jia X, Jolly P. Experimental verification of a heat pump assistedcontinuous dryer simulation model. International Journal of Energy Research1993;17:1928.64 Strommen I, Kramer K. New applications of heat pumps in drying processes.Drying Technology 1994;12(4):889901.65 Bannister P, Bansal B, Carrington CG, Sun ZF. Impact of kiln losses ona dehumidifier dryer. International Journal of Energy Research 1998;22:51522.66 Adapa PK, Schoenau GJ, Sokhansanj S. Performance study of a heat pumpdryer system for specialty crops Part 1: Development of a simulation model.International Journal of Energy Research 2002;26:100119.67 Ogura H, Hamaguchib N, Kageb H, Mujumdar AS. Energy and cost estimationfor application of chemical heat pump dryer to industrial ceramics drying.Drying Technology 2004;22(1 and 2):30723.68 Alves-Filho O, Eikevik TM, Goncharova-Alves SV. Single- and multistage heatpump drying of protein. Drying Technology 2008;26(4):4705.69 Slim R, Zoughaib A, Clodic D. Modeling of a solar and heat pump sludge dryingsystem. International Journal of Refrigeration 2008;31:115668.70 Oktay Z. Testing of a heat pump assisted mechanical opener dryer. AppliedThermal Engineering 2003;23:15362.71 Oktay Z, Hepbasli A. Performance evaluation of a heat pump assisted mechan-ical opener dryer. Energy Conversion Management 2003;44:1193207.72 Colak N, Kuzgunkaya E, Hepbasli A. Exergetic assessment of drying ofmint leaves in a heat pump dryer. Jour
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。