毕业设计(论文)1.docx

1000m3天然气球罐设计

收藏

压缩包内文档预览:(预览前20页/共53页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:34426452    类型:共享资源    大小:781.42KB    格式:ZIP    上传时间:2019-12-26 上传人:遗**** IP属地:湖北
40
积分
关 键 词:
1000 m3 天然 气球 设计
资源描述:
1000m3天然气球罐设计,1000,m3,天然,气球,设计
内容简介:
南华大学本科生毕业设计(论文)开题报告设计(论文)题目1000m3天然气球罐设计设计(论文)题目来源自选课题设计(论文)题目类型工程设计起止时间2009.1.4 5.31一、 设计(论文)依据及研究意义:天然气燃烧后无废渣、废水产生,具有使用安全、热值高、洁净等优势,广泛作为发电、石油化工、机械制造、玻璃陶瓷、汽车、集中空调的燃料或原料。球罐与圆筒形容器相比其主要优点是:受力均匀;在同样壁厚条件下,球罐的承载能力最高,在相同内压条件下,球形容器所需要壁厚仅为同直径、同材料的圆筒形容器壁厚的1/2(不考虑腐蚀裕度);在相同容积条件下,球形容器的表面积最小,由于壁厚、表面积小等原因,一般要比圆筒形容器节约30%40%的钢材。二、 设计(论文)主要研究的内容、预期目标(技术方案、路线):本次设计的是1000m3天然气球罐。设计的主要内容:球罐工艺设计(壁厚、内径、地脚螺栓、支柱及拉杆等),并对其进行强度计算及校核,绘制图纸等。技术方案及路线:首先进行选材,然后进行球罐的尺寸计算,最后进行强度计算和校核。三、设计(论文)的研究重点及难点:重点是:球罐的尺寸计算和确定以及强度计算和校核。难点是:由于本次设计的球罐为高压储罐而且考虑了各种载荷,其难点是对球壳以及一些球罐附件件的强度计算及校核。四、设计(论文)研究方法及步骤(进度安排):1月4日至1月14日:了解我们所要设计的试验装置,为进行设计做准备; 1月15日至2月9日:查阅资料,找设计依据,理出设计思路; 2月10日至3月19日:算数据,求得设计的各种依据; 3月20日至5月9日:设计,画出设计图纸; 5月10日至5月24日;整理图纸,进行打印。写出设计说明书并校核。 5月25日至5月31日:准备答辩。五、进行设计(论文)所需条件: 1、要有充分的资料(在图书馆查阅与天然气球罐相关的书籍,进行筛选,选出有用的信息)。 2、到工厂进行实习,了解天然气球罐基本结构。 3、设计所需设计方法、软件、工具等。六、指导教师意见: 签名: 年 月 日毕业设计(论文)任务书学 院: 机械工程学院 题 目: 1000m3天然气球罐设计 起止时间: 2009 年 1 月 4日至 2009 年 5月31 日学 生 姓 名: 邓小虎 专 业 班 级: 过控052班 指 导 老 师: 段小林 教研室主任: 冯 小 康 院 长: 邱 长 军 2009年 1月 4 日设计(论文)内容及要求:一、 已知设计参数:工作压力1.6MPa 操作温度40物料:天然气全容积 1000m3二、设计内容及设计工作量要求:(1)按所给设计参数完成1000m3球罐施工图设计;(2)绘制设计图纸总计3张零号以上,其中要求手工绘图1张壹号以上;(3)设计说明书字数不少于1.5万字,并要求统一用A4纸打印;(4)翻译3千左右汉字量的与毕业设计有关的英文资料;(5)撰写相当于3百汉字的英文摘要。三、主要参考资料: 化工设备设计全书(球罐) GB12337-1998钢制球形储罐 GB150-1998钢制压力容器 指导教师: 年 月 日引 言11、设计主要参数的确定33、球壳强度计算53.1壁厚的确定53.1.1计算压力53.1.2球壳各带厚度63.1.3试验压力校核63.2球罐质量计算73.3地震载荷计算83.3.1自振周期83.3.2地震力93.4风载荷计算93.5弯矩计算103.6支柱计算103.6.1单个支柱的垂直载荷重力载荷支柱的垂直最大载荷103.6.2组合载荷113.6.3单个支柱弯矩偏心弯矩附加弯矩总弯矩133.6.4支柱稳定性校核133.7地脚螺栓计算143.7.1拉杆作用在支柱上的水平力143.7.2支柱底板与基础的摩擦力153.7.3地脚螺栓的选取153.8支柱底板153.8.1支柱底板直径153.8.2底板厚度163.9拉杆计算163.9.1拉杆螺纹小径的计算163.9.2拉杆连接部位的计算销子直径耳板厚度翼板厚度连接焊缝强度校核183.10支柱与球壳连接最低点a的应力校核193.10.1 a点的剪切应力193.10.2 a点的纬向应力203.10.3 a点的应力校核203.11支柱与球壳连接焊缝的强度校核214、附件的设置215、制造及安装235.1材料要求235.2球壳板下料、成型及运输245.3组装255.4焊接265.5无损检测265.6焊后整体热处理265.7压力试验和气密性试验286 极板尺寸计算296.1赤道板尺寸计算296.2极板尺寸计算306.2.1极中板尺寸计算316.2.2极侧板尺寸计算336.2.3极边板尺寸计算34南华大学机械学院毕业设计前 言天然气是当今最清洁的可用矿物燃料之一。其主要成分是烷烃,甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水汽,以及微量的惰性气体(如氦和氩等)。燃烧天然气时,主要产生二氧化碳及水蒸气。燃烧时几乎不对大气层释放二氧化硫或小微粒物质,所释放的有害物质也比其他矿物燃料如煤及原油少得多。就相对热值而言,天然气价格比其他大多数燃料便宜。例如,天然气比煤气便宜约34%至88%,比液化石油气便宜约38%至52%及比电力便宜约63%至80%。天然气本身并不具爆炸性,它必须与空气混合至超过一定百分比后才可燃烧。此外,天然气不含一氧化碳或其他有毒气体,所以纵使吸入少量天然气也不危害人体健康。由于天然气以管道输送至最终用户,因此免除使用罐装液化石油气时储存燃料带来的危险。并且天然气比空气轻,万一发生漏气会迅速扩散而不容易聚结形成爆炸。天然气纯净。燃烧充分,燃烧效率高。因此天然气燃烧时较相同热值的大部分其他矿物燃料释放出的热量更高。由于以管道输送天然气工艺,故无须像其他燃料如罐装液化石油气搬运。此外,天然气燃烧设备比煤或其他矿物燃料的燃烧设备简单、容易操作及方便保养。而且,使用天然气后无须弃置固体废料或烟灰。天然气燃烧后无废渣、废水产生,具有使用安全、热值高、洁净等优势,使其广泛作为发电、石油化工、机械制造、玻璃陶瓷、汽车、集中空调的燃料或原料。本次设计的是1000m3天然气球罐,球罐与圆筒形容器相比其主要优点是:受力均匀;在同样壁厚条件下,球罐的承载能力最高,在相同内压条件下,球形容器所需要壁厚仅为同直径、同材料的圆筒形容器壁厚的1/2(不考虑腐蚀裕度);在相同容积条件下,球形容器的表面积最小,由于壁厚、表面积等原因,一般要比圆筒形容器节约30% 40%的钢材,也就减少了成本。因此,液化气球罐作为一种高效的III类存储容器,在我国得到了广泛的使用。1、设计主要参数的确定 此次设计为以甲烷为主要组分的天然气作为介质来设计的,给定操作温度40,工作压力为1.6MPa,取设计压力1.7MPa;罐体腐蚀裕量取1mm、单位充装量0.65Kg/ m3 ,因为是气体,充装系数按1.0。该设备工作地点为湖南省衡阳市,查资料确定其风压、雪压值,具体设计条件如下:公称容积:1000m3 存储介质:天然气(甲烷)物料密度: 2=0.65Kg/ m3设计压力:P=1.7MPa设计温度:40球壳内直径:Di =12300mm充装系数:k=1.0地震设防烈度:8度基本风压值:q0 =450N/ m2基本雪压值:q=300N/m2 球罐建造场地:II类场地土、近震、B类地区2、总体设计方案2.1设计选材 1000立方米天然气球罐壳体材料采用国产16MnR,它具有良好的焊接性能;锻件采用16MnRIII;焊条采用E5015(J507)。壳体板材厚度大于20mm应用超声检测,符合JB/T4730-2005规定III级合格。2.2球罐设计方案的确定球壳内直径12300mm,按JB/T4711-92球罐储罐型式与基本参数标准推荐采用混合式三带排版,分别为上极、赤道带、下极。球体分为34块板,最大板宽(弧长)为2200.42mm,最长板长(弧长)为8426.00mm,焊缝总长314.06。支柱10根,支柱选为用325x14钢管。按此设计焊缝分布合理,材料利用率高,生产制作简单容易,在一定程度上降低生产成本及生产周期,提高生产效益极生产进度。 图2.1球罐总体设计图表2.1球壳极板设计参数序号各带球心块数纵焊缝长(m)环焊缝(m)焊缝总长(m)1上极:102.5742.630.13314.062赤道带77.5208.43x2030.133下极:102.5742.6 支柱结构设计,支柱与球罐壳体的连接按GB12337选用的是赤道正切柱支撑。正切结构式由多根圆柱状的支柱在球壳赤道部位等距离布置,与球壳相切或相近似相切而成的焊接结构。支柱撑住球罐的重量,为承受风载荷和地震载荷,保证球罐的稳定性,在支柱之间设置拉杆相连接。这种支座的优点是受力均匀,弹性好,能承受热膨胀的变形,组焊方便,施工简单,容易调整,现场操作和检查也方便,且适用于多种规格的球罐。基于以上考虑,本球罐上支柱结构采用赤道正切支柱型式;U型托板连接结构。 支柱上应设置通风口是处于安全防火的需要,一旦遇到火灾,支柱内的气体会急剧膨胀,压力迅速升高,短时间内造成支柱爆裂,球罐倒塌,为避免此类情况发生,在支柱上应设置通风口。因是天然气球罐,还应设置防火层,防火层应选用耐热性和保温性能好的火水泥层或涂耐火涂料。 球罐除球壳板及零部件外,通常还有附件。附件包括压力表,温度计、液位计、安全阀、禁忌切断阀、接地、在次球罐都需设置。同时因为是天然气球罐,则要求必须设置消防喷淋装置和降温喷淋装置。3、球壳强度计算3.1壁厚的确定3.1.1计算压力根据Pci=p+hi2g10-9MPa式中:设计压力p=1.7MPa Hi为介质静压力 物料密度2 =0.65Kg/ m3重力加速度:g=9.81m/s2因为介质为气体,物料密度小,介质静压力可忽略不计,故球壳各带的计算压力为其设计压力1.7MPa。3.1.2球壳各带厚度 根据di=PciDi4t-Pci+C式中:球壳内直径Di =12300mm 设计温度下球壳材料16MnR的许用应力查表得t=157MPa焊缝系数=1.0厚度附加量按C=C1+C2 (钢材厚度负偏差C1取0;腐蚀裕量C2取1.0mm)C=0+1.0=1.0mm各带:di=PciDi4t-Pci+C=1.71230041571-1.7+1.0=34.4mm根据以上各带厚度计算结果取各带球壳板的名义厚度均为:n=36mm3.1.3试验压力校核水压试验压力PT=1.25Pt=1.251.71=2.13MPa式中:P=1.7MPa t=157MPa =157MPa压力试验前校核球壳应力: T=PT(Di+e)4e=2.13(12300+35)435=187.7MPa式中:T-试验压力下球壳的应力,Mpa;试验压力:PT =2.13Mpa; 球壳有效厚度按e=n-C=36-1.0=35mmT应满足下列条件:液压试验时,T0.9s;式中:球壳材料在试验温度下的常温屈服点,查表得s=305 焊缝系数=1.0即:T=187.7MPa0.93051=274.5MPa结论:合格。3.2球罐质量计算球壳平均中径:Dcp =12336mm球壳材料密度:1 =7850Kg/m3充装系数:k=1.0水的密度:3 =1000Kg/m3物料密度:2 =0.65Kg/ m3球壳外直径:Do =12372mm地震设防烈度:8度基本雪压值:q=300N/m2 球面积雪系数:C5 =0.4球壳质量, m1=Dcp 2n1 10-9=12336236785010-9=135105Kg物料质量, m2=6Di32k10-9=61230030.65110-9=633Kg液压试验时液体(水)的质量, m3=6Di3310-9=6123003100010-9=974348Kg积雪质量, m4=4gDo2qCs10-6=49.811237223000.410-6=1152Kg保温层质量,m5=0(无保温)支柱、拉杆及附件的质量,m6=19605Kg操作状态下的球罐质量, mo=m1+m2+m4+m5+m6 =135105Kg+633Kg+1152Kg+0+19605Kg =156495Kg液压试验状态下的球罐质量, mT=m1+m3+m6 =135105Kg+974348Kg+19605Kg =1129058Kg球罐最小质量, mmin=m1+m6 =135105Kg+19605Kg =154710Kg3.3地震载荷计算3.3.1自振周期支柱底板底面至球壳中心的距离:H0=8000mm支柱数目:n=10支柱材料20号钢的常温弹性模量:Es=192103MPa支柱外直径:do=325mm支柱内直径:di=305mm支柱横截面惯性矩, I=64do4-di4=64(3254-3054)=1.229108mm4支柱底板底面至拉杆中心线与支柱中心线交点处的距离:l=5600拉杆影响系数, =1-lH023-2lH0=1-5600800023-256008000=0.216球罐可视为一个单质点体系,其基本自振周期, T=m0H0310-33nEsI=156495800030.21610-33101921031.229108 =0.49163.3.2地震力综合影响系数:C2=0.45地震影响系数的最大值,查表:min=0.45特征周期,按场地土类别II类及近震查表:Tg=0.30s对应于自振周期T的地震影响系数,=(TgT)0.9min=(0.300.4912)0.90.45=0.2887球罐的水平地震力, Fe=Czm0g=0.450.28871564959.81=204943N=1.994105N3.4风载荷计算风载体形系数:k1=0.4系数查表:1=1.64风振系数: k2=1+0.351=1.49基本风压值:q0=450N/m2支柱底板底面至球壳中心的距离:H0=8.0m风压高度变化系数查表计算得:f1=0.92球壳附件增大系数:f2=1.1球罐的水平风力, FW=4Do2k1k2q0f1f210-6=41237220.41.494500.921.110-6 =3.263104N3.5弯矩计算视地震载荷和风载荷为一作用于球壳中心的集中水平载荷,则由于水平地震力和水平风力引起的最大弯矩, Mmax=FmaxL=2.0761052400=4.98108N.mm式中,Fmax为最大水平力,取(Fe+0.25FW)与FW较大值。而 FW=3.263104N Fe+0.25FW=1.994105+0.253.263104=2.076105N故取:Fmax=2.076105NL为力臂:L=H0-l=8000-5600=2400mm3.6支柱计算3.6.1单个支柱的垂直载荷重力载荷操作状态下的重力载荷, GO=mOgn=1564959.8110=1.535105N液压试验状态下的重力载荷, GT=mTgn=11290589.8110=1.11106N支柱的垂直最大载荷支柱中心圆半径:R=Ri=6150mm最大弯矩对支柱产生的垂直载荷的最大值, (Fi)max=0.2a=0.2MmaxR=0.24.981086150=1.62104N拉杆作用在支柱上的垂直载荷的最大值,(Pi-j)max=0.3230b=0.3230lFmaxR=0.323056002.0761056150=6.1104N以上两力之和的最大值, Fi+Pi-jmax=0.117a+0.307b=0.117MmaxR+0.307lFmaxR=0.1174.981086150+0.30756002.0761056150 =6.75104N3.6.2组合载荷操作状态下支柱的最大垂直载荷, WO=GO+(Fi+Pi-j)max=1.535105+6.75104=2.21105N液压试验状态下支柱的最大垂直载荷,WT=GT+0.3(Fi+Pi-j)maxFWFmax=1.11106+0.30.6751053.2631042.076105=1.113106N3.6.3单个支柱弯矩偏心弯矩操作状态下赤道线的液柱高度:hOe=0mm液压试验状态下赤道线的液柱高度:hTe=6150mm操作状态下物料在赤道线的液柱静压力:POe=0MPa液压试验状态下液体在赤道线的液柱静压力:PTe=hTe3g10-9=5990.510009.8110-9 =0.06MPa球壳的有效厚度:e=n-C=36-1.0=35mm操作状态下的球壳赤道线的薄膜应力,Oe=P+POe(Di+e)4e=1.7+0(12300+35)435=149.78MPa液压试验状态下球壳赤道线的薄膜应力,Te=PT+PTe(Di+e)4e=2.13+0.06(12300+35)435=192.95MPa球壳内半径:Ri=6150mm球壳材料的泊松比:=0.3球壳材料16MnR弹性模量,查表:E=206103MPa操作状态下支柱的偏心弯矩,MO1=OeRiWOE1-=149.7861502.21105206103(1-0.3)=6.92105Nmm液压试验状态下支柱的偏心弯矩,MT1=TeRiWTE1-=192.9561501.1131062061031-0.3=4.49106Nmm附加弯矩操作状态下支柱的附加弯矩, MO2=6EsIOeRiH02E1-=61921031.229108149.786150800022061031-0.3=6.92106Nmm液压试验状态下支柱的附加弯矩,MT2=6EsITeRiH02E1-=61921031.229108192.956150800022061031-0.3 =8.92106Nmm总弯矩操作状态下支柱总弯矩,MO=MO1+MO2=6.92105+6.92106=7.61106Nmm液压试验状态下支柱的总弯矩, MT=MT1+MT2=4.49106+8.92106=1.341107Nmm3.6.4支柱稳定性校核单个支柱的横截面积:A=4do2-di2=43252-3052=9896mm2支柱的惯性半径:ri=IA=1.2291089896=111.44mm支柱长细比:=k3H0ri=18000111.44=71.79 式中,计算长度系数k3=1。支柱材料20号钢的常温常压屈服点,查表:s=245MPa支柱换算长细比,=sEs=71.79245192103=0.816当0.215时,弯矩作用平面内的轴心受压支柱稳定系数:p=1222+3+2-2+3+22-42=120.81620.986+0.1520.816+0.8162-0.986+0.1520.816+0.81622-40.8162 =0.808等效弯矩系数:m=1截面塑性发展系数:=1.15单个支柱的截面系数,Z=(do4-di4)32do=(3254-3054)32325=0.756106N欧拉临界力,WEX=2EsA2=2192103989671.792=3.639106N支柱材料的许用应力:c=s1.5=2451.5=163.33MPa操作状态下支柱的稳定性校核, WOpA+mMOZ1-0.8WOWEX=0.2211060.8089896+10.7611071.150.7561061-0.80.2211063.639106 =33.93MPac=163.33MPa液压试验状态下支柱的稳定性校核, WTpA+mMTZ(1-0.8WTWEX)=1.1131060.8089896+11.3411071.150.7561061-0.81.1131063.639106 =159.61MPac=163.33MPa结论:稳定性校核合格。3.7地脚螺栓计算3.7.1拉杆作用在支柱上的水平力拉杆和支柱间的夹角:=arctg2Rsin180nl=arctg26105sin180105600=34.17拉杆作用在支柱上的水平力,Fc=Pi-jmaxtan=0.61105tg34.17=4.14104N3.7.2支柱底板与基础的摩擦力支柱地板与基础的摩擦系数:fs=0.4支柱底板与基础的摩擦力,Fs=fsmmingn=0.41547109.8110=6.08104N3.7.3地脚螺栓的选取因FcFs,则球罐不需设置地脚螺栓,但为了固定球罐位置,应设置地脚螺栓。每个支柱上的地脚螺栓个数:nd=2结论:选取M30的地脚螺栓。3.8支柱底板3.8.1支柱底板直径基础采用钢筋混凝土,其许用应力:bc=3.0MPa地脚螺栓直径:d=30mm支柱底板直径Db取下列两式中的较大值:Db1=1.13Wmaxbc=1.131.1131063.0=689mmDb2=810d+do=81030+325=565625mm选取底板直径Db=700mm3.8.2底板厚度底板的压应力:bc=4WmaxDb2=41.111067002=2.884MPa底板外边缘至支柱外表面的距离:lb=700-3252=187.5mm底板材料Q235-B的常温屈服点:s=225MPa底板材料的许用弯曲应力:b=s1.5=2251.5=150MPa底板的腐蚀裕量,一般取Cb=3mm 。支柱底板厚度,b=3bclb2b+Cb=32.8848187.52150+3=48.03mm结论:选取底板厚度b=50mm 。3.9拉杆计算3.9.1拉杆螺纹小径的计算拉杆的最大拉力, FT=(Pi-j)maxcos=0.61105cos34.17=7.129104N上式中,拉杆和支柱间的夹角=34.12 。拉杆材料的常温屈服点,查表:s=295MPa拉杆材料的许用应力:T=s1.5=2951.5=196.7MPa拉杆的腐蚀裕量,一般取CT=3mm 拉杆螺纹小径, Db1=1.13FTT+CT=1.130.7129105196.7+3=22.03mm结论:选取拉杆的螺纹公称直径为M30。3.9.2拉杆连接部位的计算销子直径销子直径,dP=0.8FTp=0.80.7129105118=19.66mm式中,销子材料的常温屈服点:s1=295MPa 销子的许用应力:p=0.4s1=0.4295=118MPa结论:选取销子的直径为22mm。耳板厚度c=FTdPc=0.712910522205=15.8mm式中:耳板材料的常温屈服点:Q235-B,s2=225MPa 耳板材料的许用压应力:c=s21.1=2251.1=205MPa结论:选取耳板厚度为18mm。翼板厚度a=c2s2s3=15.82225235=7.7mm式中:耳板材料的常温屈服点:s2=225MPa 咦板材料的常温屈服点:s3235MPa结论:选取翼板厚度为12mm。连接焊缝强度校核1)耳板与支柱的焊缝A(见图3.1)所承受的剪切应力:图 3.1耳板与支柱FT1.41L1S1=712901.4138010=13.32MPaW=54MPa式中:A焊缝单边长度:L1=380mm;A焊缝焊脚尺寸:S1=10mm 支柱或耳板材料常温屈服点的较小值:s=225MPa 角焊缝系数:取a=0.6;焊缝的许用剪切应力, W=0.4sa=0.42250.6=54MPa2)耳板与支柱的焊缝A所承受的剪切应力, FT2.82L2S2=712902.8220010=12.64MPaW=54MPa式中:B焊缝单边长度:L2=200mm; B焊缝焊脚尺寸:S2=10mm; 拉杆或翼板材料常温屈服点的较小值:s=235MPa; 角焊缝系数:取a=0.6;焊缝的许用剪应力, W=0.4sa=0.42350.6=56.4MPa结论:焊缝强度通过。3.10支柱与球壳连接最低点a的应力校核(见图3.2)图 3.2支柱与球壳连接支柱与球壳板连接最低点(a点)是一个薄弱环节,此点的应力必须进行应力校核。目前,主要用GB12337-90中a点应力的计算公式来计算横托板下表面a点的应力。3.10.1 a点的剪切应力操作状态下a点剪切应力, O=GO+(Fi)max2LWea=1.535105+1.621042193135=1.255MPa液压试验状态下a点剪切应力,T=GT+0.3FimaxFWFmax2LWea=1.11106+0.31.621043.2631042.0761052193135 =8.22MPa式中:支柱与球壳连接焊缝单边的弧长:LW=1931mm 球壳a点处的有效厚度:ea=35mm3.10.2 a点的纬向应力操作状态下a点的液柱高度:hOa=0mm;液压试验状态下物料在a点的液柱高度:hTa=8081mm;操作状态下物料在a点的液柱静压力: POa=hOag10-9=0液压试验状态下液体(水)在a点的液柱静压力:PTa=hTag10-9=808110009.8110-3=0.08MPa;操作状态下a点的纬向应力:O1=P+POaDi+ea4ea=1.7+012300+35435=149.78MPa液压试验状态下a点的纬向应力:T1=PT+PTaDi+ea4ea=2.13+0.08(12300+35)435=194.7MPa3.10.3 a点的应力校核操作状态下a点的组合应力,Oa=O1+O=149.78+1.255=151.04MPa液压试验状态下a点的组合应力,Ta=T1+T=194.7+8.22=202.92MPa应力校核:a点的组合应力满足Oa=151.04MPat=157MPaTa=202.92MPa0.9s=0.9305=274.5MPa式中:s为试验温度下球壳材料的屈服点结论:校核通过。3.11支柱与球壳连接焊缝的强度校核支柱与球壳连接焊缝所承受的剪切应力,W=W1.41LWS=1.1111061.41193110=40.8MPa式中:W取GO+Fimax和GT+0.3FimaxFWFmax两者之中的较大者,其中GO+Fimax=1.535105+1.62104=1.697105NGT+0.3FimaxFWFmax=1.11106+0.31.621043.2631042.076105 =1.111106N 所以,W=GT+0.3FimaxFWFmax=1.111106N 支柱与球壳连接焊缝焊角尺寸:S=10mm支柱与球壳连接焊缝的许用剪切应力,W=0.4sa=0.42450.6=58.8MPa其中:支柱或球壳材料屈服点的最小值:s=245MPa 角焊缝系数:取a=0.6;应力校核: W=40.8MPaW=58.8MPa,通过。4 极板尺寸计算4.1赤道板尺寸计算 图 4.1赤道板尺寸弧长L=R0180=3.14615077.5180=8314.46mm弦长 L=2Rsin(02)=26150sin77.52=7698.86mm弧长B1=2RNcos(02)=23.14615020cos77.52=1506.03mm弦长B1=2Rcos(02)sin(2)=26150cos77.52sin22.52=1871.70mm弧长B2=2RN=23.14615020=1931.1mm弦长B2=2Rsin(2)=26150sin22.52=2399.61mm弦长D=2R1-cos202cos22=261501-cos277.52cos222.52=7923.72mm弧长D=R90sin-1(D2R)=3.14615090sin-17923.7226150=8605.43mm4.2极板尺寸计算图 4.2极板尺寸对角线弦长与弧长的最大间距:H=1+sin2(12+2)=1+sin 2(22.52+22.5)=1.14弦长B1=2Rsin(12+2)H=26150sin(22.52+22.5)1.14=5994.31mm弧长B1=R90sin-1(B12R)=3.14615090sin-15994.3126150=6258.06mm弦长D0=2B1=25994.31=8477.23mm弧长D0=R90sin-1(D02R)=3.14615090sin-18477.2326150=9348.08mm弦长B2=2Rsin(12+2)=26150sin(22.52+22.5)=6833.51mm弧长B2=R(1+22)180=3.146150(22.5+222.5)180=7241.63mm4.2.1极中板尺寸计算图 4.3极中板尺寸对角线弦长与弧长的最大间距:A=1-sin212sin2(12+2)=0.994弧长B2=R1180=3.14615022.5180=2413.88mm弦长B2=2Rsin(12)=26150sin22.52=2399.61mm弧长L2=R(1+22)180=3.146150(22.5+222.5)180=8360.25mm弦长L2=2Rsin(12+2)=26150sin(22.52+22.5)=6833.51mm弦长L1=2Rcos(12)sin(12+2)A=26150cos22.52sin(22.52+22.5)0.994=6747.88mm弧长L1=R90sin-1(L12R)=3.14615090sin-16747.8826150=7138.97mm弦长B1=2Rsin(12)cos(12+2)A=26150sin22.52cos(22.52+22.5)0.994=2006.11mm弧长B1=R90sin-1B12R=3.14615090sin-12006.1126150=2014.09mm弦长D=L12+B12=6747.882+2006.112=7039.77mm弧长D=R90sin-1(D2R)=3.14615090sin-17039.7726150=7941.27mm4.2.2极侧板尺寸计算图 4.4极侧板尺寸弦长L1=2Rcos(12)sin(12+2)A=26150cos22.52sin(22.52+22.5)0.994=6747.88mm弧长L1=R90sin-1(L12R)=3.14615090sin-16747.8826150=7138.97mm弦长L2=2Rsin(12+2)H=26150sin(22.52+22.5)1.144=5977.97mm弧长L2=R90sin-1(L22R)=3.14615090sin-15977.9726150=6239.37mm弧长B2=R2180=3.14615022.5180=2413.88mm弦长B2=2Rsin(22)=26150sin22.52=2399.61mm弧长B1=R1801=3.14615018019.66=2109.19mm弦长B1=2Rsin(12)=26150sin19.662=2099.92mm弦长D=B12+L2L1=6689.42mm弧长D=R90sin-1(D2R)=7069.21mm上列式中,A、H同前;1=sin-1(L22R)-sin-1(K2R)=sin-1(5977.9726150)-sin-1(2006.1126150)=19.66K=2Rsin(12)cos(12+2)A=26150sin22.52cos(22.52+22.5)0.994=2006.11mm4.2.3极边板尺寸计算图 4.5极边板尺寸弧长L1=R2cos(02)=3.1461502cos77.52=7530.17mm弦长L1=2Rcos(02)=26150cos77.52=6781.95mm弦长L3=2Rsin(22+2)H=26150sin(22.52+22.5)1.144=5973.35mm弧长L3=R90sin-1L32R=3.14615090sin-15973.3526150=6234.08mm弧长B2=R1803=3.14615018022.5=2413.88mm弦长B2=2Rsin32=26150sin22.52=2399.61mm弧长B1=R1802=3.14615018012.89=1382.88mm弦长B1=2Rsin(22)=26150sin12.892=1380.67mm弦长D=B12+L3L1=1380.672+5973.356781.95=6512.85mm弧长D=R90sin-1(D2R)=3.14615090sin-16512.8526150=6860.06mm弧长L2=R4180=3.14615065.58180=7035.64mm弦长L2=2Rsin(32)=26150sin(100.012)=6662.09mm上列式中,2=180-02-sin-1(D02R)=180-77.52-sin-18477.2326150=12.893=90-02+sin-1(M2R)=90-67.52+sin-19662.5926150=100.014=2sin-122sin(32)=2sin-122sin(100.012)=65.58M=22Rsin(12+2)H=226150sin(22.52+22.5)1.144=9662.59mm5、附件的设置球罐除球壳板及零部件外,通常还有附件。附件包括压力表、温度计、液位计、安全阀、紧急切断阀、接地。安全附件的设计、选择如下:(1) 压力表:按规定“在球罐顶部和底部各设置一个量程相同并经过校正的压力表,选用压力表的量程为2倍试验压力左右” 。故选用压力表的规格为:YA-150压力表04MPa,精度1.5级。(2) 温度计:上下两个温度计,型号为:温度计WS-71,插入深度250。(3) 液位计:装设现场和远传液位计,且有高低位报警装置和带联锁的高液位报警,以免发生事故。因直径较大,而液位计的规格有一定的规格,故此次选用两个型号为HG/T21584-1995磁性液位计UZ4.0M-6000-0.6AF304/A作为现场液位计。(4) 安全阀:因介质的原因必须设置两个安全阀,每个都能满足事故状态下最大泄放量的要求。型号为:CA42F-25安全阀DN150开启压力1.7MPa,数量2个。具体计算如下:a) 容器安全泄放量(WSI), WS=2.8310-3Vd2=551.85kg/h 式中:为天然气密度0.65kg/m3 V为天然气进口管的流速30m/s D为压力容器进口管内径100mmb) 单个DN100安全阀排气能力,WS1=7.610-2CKPdAMZT=7.610-23480.651.973318241.0313=31115kg/hPS:整定压力PS=1.7MPaPO:出口侧压力PO=1.7+0.1=1.8MPaPd:排放压力(绝压)Pd=1.1PS+0.1=1.97MPaK:气体绝热系数,查表得:k=CPCV=1.31C:气体特征系数,查表:C=348K:排放系数,按全启式安全阀取K=0.65A:安全阀最小排气截面积,A=d124=6524=3318mm2d1:安全阀喉径,DN100喉径为65mmM:气体摩尔质量,M=24kg/kmolT:气体温度,T=273+40=313KZ:气体在操作温度压力下的压缩系数取1.0结论:WS1=31115kg/hWS=551.85kg/h 两个DN100安全阀满足设计要求。(5) 接地:设置两个接地电阻为10的接地板,材料为1Cr18Ni9。(6) 梯子平台现场配作。6、制造及安装6.1材料要求球罐制造所用主体材料为16MnR和16MnIII,下料前板材16MnR符合GB6654-96标准,逐张超声波检测,标准III级要求,使用状态:正火,并进行0度冲击试验;锻件符合JB/T4726-2000标准,III级合格。主体材料的化学成分和力学性能如下:表6.1 主体材料的化学成分化学元素16Mn锻件,%16MnR钢板,%CSi0.200.600.20.55Mn1.201.601.201.60P0.0300.030S0.0150.015Ni0.300.30Cr0.30Cu0.25表6.2 主体材料的力学性能检验项目16Mn锻件16MnR钢板b450600470600s275305%2021AKV-2,J27(三个试样平均值)31(0三个试样平均值)硬度试验,HB121-178支柱选用符合GB8163的20#钢管。6.2球壳板下料、成型及运输 a)按零件图编制下料排版图,并进行材料标记; b)上水压机冷压成型,并用一次样板检查,任意部位间隙小于等于2.0mm,不允许存在包边及皱边; c)按二次样板划切割线,样冲标识切割线。沿切割线切割球壳,对接坡口形式及尺寸按图,气割要求表面平滑,粗糙度25un;平面度B1.0mm,熔渣及氧化皮应清除干净,坡口表面不得存在夹渣、分层、裂纹等缺陷; d)对每块球壳板坡口周边100mm范围内全面积检测,符合JB/T4730-2005标准III合格; e)测厚:不小于35.50mm; f)对球壳板进行总检:球壳板长度方向弦长公差2.5mm,宽度方向弦长2.0mm,对角线公差3.0mm; g)坡口表面机器内、外表面50mm范围内涂可焊性涂料; i)球壳板运输时,需根据球片曲率制作运输包装架,防止球壳板运输变形。6.3组装6.3.1按图清点各零部件,复验其主要尺寸,标志清楚齐全。6.3.2组焊定位块:定位块在球壳板吊装前焊完,焊接前应画出焊接位置,确保全部球壳板定位块的一一对应和调整卡具使用合适,允许偏差0.5mm。内脚手脚及外防护棚的搭设。球罐内部用32510无缝钢管和1 1/2有缝钢管组成伞形架;外部与防护棚共同形成罐外操作平台。为保证伞形架的稳定,在不影响球罐安装的情况下,在其顶部和底部分别用钢丝绳和型钢固定。6.3.3球罐赤道板的组装采用插入法,具体步骤如下: a)赤道带板应在安装前在板中划出中心线,以保证安装时赤道板处于一个水平度,按排版图吊装带支柱的赤道板,用钢丝绳牵引,准确就位,使座板十字中心线和柱底板十字中心线吻合。采取临时固定措施,防止倾倒,安装柱间拉杆,调整支柱垂直度,以利于相邻赤道板的组装,且有利于控制支柱最终垂直度。 b)吊装其它赤道板,安装组装夹具进行固定,根据球壳板复检计算调整间隙、错边、棱角度、端口水平度。 c)组对成环后,按技术要求进行检查、调整,重点注意调整上、下环口的椭圆度和周长,以利于上、下极带的组装,且在支柱下端用水准仪测出各支柱的水准线,以便检查,调整赤道线水平度。6.3.4上极带板的组装上极带板起吊就位时,壳板上端用组装夹具与赤道带上端连接,壳板下端用倒链钩挂在伞形架上,调节球台高度和下口直径,待组装完毕后拆除。6.3.5下极带板的组装 下极带板起吊就位时,球壳板下端用组装夹具与赤道带板下端连接,壳板上端用倒链钩挂在伞形架上,调节球台高度和下口直径,待组装完毕后拆除。6.4焊接 球罐壳体及壳体与各接管锻件焊接选用低氢碱性焊条E5015(J507),壳体施焊前应将坡口表面和两侧至少20mm范围内的油污、水分及其他有害杂质清除干净。该壳体采用双面焊对接焊缝,单侧焊接后应进行背面清根,清根时应将定位焊的溶附金属清除掉,清根后的坡口形状、宽窄应一致。焊后须立即进行热后消氢处理,后热温度宜为200250,后热时间应为0.51小时。 焊后球壳两极间净距与球壳设计内直径之差和赤道截面的最大内直径与最小内直径之差小于80mm。焊缝表面不得有裂纹、咬边、气孔、弧坑和夹渣等缺陷,并不得保留有熔渣与飞溅物。对接后焊缝余高不得大于3mm。立柱与球壳的角焊缝采用E4315(J427),焊缝应圆滑过渡至母材的几何形状。6.5无损检测 无损检测要求对接焊缝焊后应进行100%的射线检测+100%超声检测+100%磁粉检测,射线和磁粉检测按JB/T4730-2005压力容器无损检测的II级为合格,超声检测按JB/T4730-2005得I级为合格。水压试验后,球壳上所有焊缝应进行20%磁粉,符合JB/T4730-2005标准规定,II级合格。6.6焊后整体热处理焊后热处理的主要目的是为了消除存在于球罐上由于组装焊接造成的残余应力,并改善焊接接头性能,特别是提高整体球罐抗脆性断裂和抗应力腐蚀的能力,同时能稳定结构形状与尺寸,改善并使淬火组织软化,细化晶粒,从而改善焊接接头的性能,降低硬度,提高塑性及断裂韧度,提高疲劳强度,提高应力腐蚀能力,避免延迟裂纹的产生。我国规定:“厚度大于30mm的16MnR钢制球壳应在压力试验之前进行焊后整体热处理”,故设计要求进行焊后整体热处理。另人孔凸缘与球壳的对接接头焊后立即进行消氢处理。 900m3球罐的焊后热处理工艺如下图 图 6.1焊后热处理图 目前,国内外针对球罐焊后整体热处理的施工方法有很多种,此次选择应用较为普遍和安全的电加热法和燃油法(内部燃烧法)。 加热以内燃法为主,同时采用电加热方式辅助加热,以保证热处理效果。此外,在结构上做了一些调整,采用在球罐外部包裹保温材料,内部进行加热及将下人孔布置居中、球罐里面的上部加上挡热板,保证采用火焰加热进行整体热处理时球壳受热均匀;在支柱底板下面,设计热处理垫板,保证了在进行热处理时支柱的移动。在支柱底板上开长圆孔,使得整个滑动体系中存在两个滑动面。6.6 焊后整体热处理 提供同材质、同规格、同批号、同坡口形式的65018036球罐试板各六块(并富有各项检验合格证或抄件),拼成三对,其中立焊、横焊、平角仰焊各一对。 试板要求:试板焊接工艺与球壳焊接工艺相同,试板焊缝经外观检查合格后,应进行100%RT+100%UT检测,符合JB/T4730-2005规定,RT II级,UT I级合格,并随同球罐同时进行热处理,然后进行机械性能检验。6.7压力试验和气密性试验 压力试验用5以上的清洁水,注满水时,应将空气排尽,试验过程中应保持球罐外表面干燥。在罐顶和罐底各装一个经校核合格且精度不低于1.5级的表盘直径150mm的压力表,其量程为04MPa,压力以罐顶读数为准,试验压力:2.13MPa。试验时,压力应缓慢上升,升至试验压力的50%时保持15分钟,对球罐的所有焊缝和连接部位进行渗漏检查,确认无渗漏后继续升压,当压力升至试验压力的90%时,保持15分钟,检查确认无渗漏后继续升压。当压力升至试验压力时,保持30分钟,然后将压力降至设计压力,进行检查,以无渗漏为合格。水压试验完毕后,应将水排尽,用压缩空气将罐内吹干。 15的干燥洁净空气,压力表和其安装要求同压力试验,气密性试验的压力应为:1.7MPa。 试验要求:a) 试验时,压力应缓慢上升,上升至试验压力的50%时,保持10分钟,然后对球罐的所有焊缝和连接部位进行渗漏检查,确认无渗漏后升压;b) 压力升至试验压力时,保持10分钟,检查以无渗漏为合格。7、外文翻译Nondestructive Testing of Pressure Vessels - spherical tank of non-destructive testing technology Abstract: The spherical tank is the storage of different types of gases and liquefied gases, one of the commonly used pressure vessel, in the petroleum, chemical, metallurgical and urban gas supply, etc. are widely used. Spherical storage tanks in the manufacturing, installation and use may occur at different stages of the shortcomings and, respectively, with the various non-destructive testing methods, including radiation detection, ultrasonic testing, magnetic particle testing, penetrant testing, eddy current testing, acoustic emission detection and magnetic memory testing techniques. , Respectively, of these characteristics of non-destructive testing methods. Keywords: pressure vessel; spherical tank; non-destructive testing; Summary Sphere in a comprehensive inspection by the general method of using conventional non-destructive testing and acoustic emission detection mode. Conventional non-destructive testing method of the model, both inside and outside the surface of the weld and welding parts scar 100% magnetic particle or penetrant testing, Butt Weld within 20% 100% ultrasonic testing, ultrasonic testing to find defects in the internal standard for-ray tests to determine the nature of defects and to determine the exact location of rework; this detection method is generally used to weld the internal standard of known defects or no defects over a small sphere, but the detection time required for testing relatively long. Acoustic emission detection method using the model, after the first suspended sphere pressure test and acoustic emission testing, and then detection of acoustic emission activity of the specified source to the surface of the site testing and ultrasonic testing repeatability and, where appropriate, the expansion of the surface detection ratio to more than 20% of the ultrasonic testing found excessive internal defect detection-ray camera to determine the nature of defects and to determine the exact location of rework; this detection method is generally used or known to weld there may exist a large number of standard spherical defects, acoustic emission testing can identify a large number of defects over the activity of repairing defects; for defect-free over the sphere, the use of such models can be significantly shortened the time to open cans tested and reduce production losses. However, It is worth recalling that, for some small surface cracks, pressure test may not have targeted the source of acoustic emission signals, therefore, sometimes acoustic emission testing can not be found in a small surface crack.1.1 Surface Detection Surface detection method is in the sphere of production to conduct a comprehensive inspection of the non-destructive testing method of choice. Surface detection of the docking site for the spherical tank weld, fillet weld, the Department of welding fixtures to remove surface traces. Iron Butt Weld surface magnetic materials commonly used methods of magnetic particle testing, commonly used outside of the sphere and wet magnetic particle testing, the internal conditions as a result of poor lighting, usually fluorescent magnetic particle testing, fillet can not be detected using magnetic penetrant testing can be used. Non-ferrous magnetic permeability of the surface testing, pressure vessel, the internal use of fluorescent penetrant testing, pressure vessel infiltration of the external detection of the use of shading. Based on years of testing experience, spherical surface crack prone parts of the main Department of Public Works to remove welding fixtures track surface, the pillars of fillet, installation ring assembly of the final weld (normally weld the loop on the pole) the outer surface, medium surface parts of the inner surface of the weld. 1.2 eddy current surface crack detection Weld surface crack detection of the magnetic powder or infiltration need to be seized prior to clean weld surface treatment, surface coating or to remove dirt, so not suitable for online detection sphere. In addition, the sphere 100% open cans both inside and outside the surface of weld testing found that more than 80% of the spherical surface without any cracks, even if the spherical surface crack was found, in general there is only a few surface crack, or seam length of l % or less, so a lot of grinding on the one hand, an increase of spherical tank production test time and cost, on the other hand, reduces the spherical shell thickness weld parts. Using eddy current technology can not remove the surface coating in the case of metal materials from the surface to detect cracks, however, conventional eddy current testing method is only applicable to materials on the surface of the crack, the crack of the weld due to weld it in the fusion of high temperature ferromagnetism arising from the changes and weld surface appear rugged and disorderly magnetic interference can not be detected. To solve these problems, people have developed the complex plane based on the analysis of weld metal material electromagnetic eddy current testing technology, there are anti-corrosion layer, the points can also be a special probe on the weld surface for rapid scanning, and lift-off effect on the test results the impact of very small 7 9. Based on the analysis of the complex plane eddy current surface crack detection apparatus using magnetic disturbance current probe eddy current testing technology to detect surface weld cracks, this method allows more rough weld surface or with a certain thickness of coating, it can be used for ball can run the course of the outer surface of the weld of the rapid detection of cracks, can also be used for spherical tank inspection at the time of production. Then the method can be used for rapid detection of the weld, and then parts of suspicious powder or penetration testing repeatability to determine the exact location of surface cracks and size. The current market in the coating apparatus can be 0.2mm, the detection sensitivity is higher than 0.5mm deep surface crack length of 5mm; 2mm in the case of coating, detection sensitivity is higher than lmm long 5mm deep surface cracks ; The instrument can also be of 5mm deep Determination of crack depth. 1.3 Ultrasonic Testing Spherical tank with a comprehensive test methods commonly used ultrasonic testing of butt weld or 100% for random testing, to detect internal weld fatigue crack may occur or the existence of hidden defects in welding, for the spherical tank is not easy to open can also be detected from the outside seam of the inner spherical surface crack, the external spherical layer of insulation covering the situation, or from the internal sphere of the outer surface of weld cracks were detected there, but the method of ultrasonic testing in general can only be found more than 5mm long lmm deep surface cracks. Ultrasonic flaw detector as a result of small size, light weight, very easy to carry and operate, and compared with the ray is harmless to human body, so the use of spherical tanks are widely used in testing. At present, the ultrasonic testing of the spherical tank found directly generated internally weld fatigue crack is very rare, the main findings of ultrasonic testing of the installation process or undetected spherical pores, slag, non-fusion and lack of penetration welding defects, such as the original. Many cases of excessive welding defects in the safety assessment of defects of the method shall be maintained, and safety assessment of need to know their own deficiencies in the length and height. The characteristics of ultrasonic detection method is more accurate in the detection of weld defects in their length and height of the safety assessment for defects in the provision of defective data geometry. JB 4730 The newly amended provisions of ultrasonic flaw detection method itself highly defective endpoint diffraction wave method, the end of the largest and 6dB echo law, but use the highest measurement accuracy is defective endpoint diffraction wave method, the accuracy of O . 5 lmm. In addition, the TOFD ultrasonic testing abroad and holographic imaging has been to promote the application of mature, these internal defects can be more intuitive and more accurate data, the current is also activated these methods of research and application work, so the future these methods in the sphere of the regular testing will play an important role. 1.4-ray detection Pressure vessels used for the comprehensive test-ray detection method mainly used for thickness 12mm of Pressure Vessels Weld Testing internal buried defects, for sheet metal using ultrasonic testing a certain degree of difficulty, and does not require the use of high-ray detection tube voltage. Spherical tank as a result of a general wall thickness of 20mm, suitable for ultrasonic testing, the most comprehensive in the test with spherical-ray detection method seldom used. But for the 80s before the 20th century, manufacture and installation of the sphere, due to strict quality control at the time, the existence of a number of weld defects in a large number of standard, so often used when a comprehensive test 7-ray detection method. Detection of the source will be 7 on the center of the internal sphere, a few hours to complete the transillumination Butt Weld 100% detection efficiency. In addition, ultrasonic testing found excessive defects, often used to complex inspection-ray detection in order to further determine the nature of these deficiencies and specific areas, to provide a basis for repairing defects. 1.5 Acoustic emission testing Acoustic emission method may be used to detect the existence of spherical active defects, but also can be used to evaluate the activity of known defects 10,111. Acoustic emission testing is different from other non-destructive testing methods, testing must be carried out during the loading of the spherical tank, commonly used for pressure vessel loading methods to stop running after the water pressure or air pressure test, the work can be directly used to load media . Defects of the activity detected in the loading process is used in a number of acoustic emission sensors on the spherical shell to the overall monitoring, to discover the source of acoustic emission activity and its host site, and then through the activity of acoustic emission source on the surface and internal defect detection, rule out the interference source and found that the existence of spherical defects. Known defects in the activity of evaluation is carried out in the loading process acoustic emission monitoring, if the entire load in the course of defective parts of the source position have a silent launch, it is a non-activity of defects, on the contrary, if a large number of acoustic emission location source signals, that is the activity of the defects. Through the center of a special prosecutor last decade in the field of more than 100 cans of acoustic emission billiards comprehensive analysis of test data and found that the acoustic emission source of conventional non-destructive testing repeatability results, Table l gives the spherical sound field emission testing may encounter a variety of typical acoustic emission source categories, and describe the source location and mechanism generated. 1.6 Magnetic Memory Testing Metal magnetic memory testing technique is Professor Du Bofu Russia in the 20th century, early 90s and late 90s developed a detection material stress concentration and fatigue damage of the new method of nondestructive testing and diagnosis. Metal magnetic memory testing is the use of the principle of ferromagnetic workpieces contained in the course of their work, stress and deformation in the region resulting from irreversible changes in magnetic state 12. Occurred in the region with the magnetostrictive nature of the magnetic domain-oriented organizations and non-reversible re-orientation, and the magnetic state of irreversible changes in the work load will not only retain, after the elimination, but also the role of stress related to the largest. Magnetic memory testing materials can be found after stress caused by fatigue damage, and even lead to the emergence of crack; but on the mechanism of magnetic memory phenomenon is not very clear understanding of the general and other non-destructive testing methods used to prevent the leakage defect seized. With the same eddy current detection methods for magnetic memory testing on the welds do not have to deal with surface polished, with paint layer can be directly detected rapid scanning, so this method is particularly suitable for on-line Tank detection. Electromagnetic eddy current testing methods with different detection method is a magnetic memory is found to exist in the sphere of high stress concentration areas, and often in these areas prone to stress corrosion cracking and fatigue damage. Detection of spherical tank, the usual magnetic memory testing apparatus for spherical tank welding seam for quick scanning to detect the existence of pressure vessel weld parts of the stress peak, and then the peak stress on these parts of local surface magnetic particle testing and internal super - sound detection, to detect possible surface cracks or internal defects. Conclusion Non-destructive testing technology in the sphere of manufacturing, installation and use of process, to ensure quality and safe operation of its very important role to play. For the manufacturing process in order to shell plate-based ultrasonic detection methods; the installation process, to the Weld-ray or ultrasound-based detection methods; for periodic inspection by the process to the surface of detection methods for detection of acoustic emission main. In addition, eddy current testing and magnetic memory testing and other new technology in the online testing has begun to be applied. It can be expected, with the new non-destructive testing technology, is bound to have some faster detection, higher sensitivity and reliability, defect showed a more intuitive new methods of detection in the sphere of application. 压力容器无损检测-球形储罐的无损检测技术摘要:球形储罐是储存各种气体和液化气体的常用压力容器之一,在石油、化工、冶金和城市燃气供应等方面得到广泛使用。球形储罐在制造、安装和使用过程中不同阶段可能出现的缺陷和分别采用的各种无损检测方法,包括射线检测、超声检测、磁粉检测、渗透检测、电磁涡流检测、声发射检测和磁记忆检测等技术。分别介绍了这些无损检测方法的特点。 关键词:压力容器;球形储罐;无损检测;综述目前在用球罐全面检验一般采用常规无损检测方法和声发射检测方法两种模式。常规无损检测方法的模式为,对内外表面焊缝和焊疤部位进行100 磁粉或渗透检测,对接焊缝内部进行20100超声检测,对超声检测发现的内部超标缺陷进行射线检测以确定缺陷的性质,并为返修确定具体部位;这种检测方法一般用于焊缝内部无已知超标缺陷或超标缺陷很少的球罐,但这种检测方法所需的检验时间相对较长。采用声发射检测方法的模式为,球罐停用后首先进行水压试验和声发射检测,然后对声发射检测指定的活性源部位进行表面检测和超声检测复验,并适当扩大表面检测的比例到20 以上,对超声检测发现的内部超标缺陷进行射线检测照相以确定缺陷的性质,并为返修确定具体部位;这种检测方法一般用于已知焊缝内部存在或可能存在大量超标缺陷的球罐,声发射检测可以从大量超标缺陷中识别出活性缺陷进行返修;对于无超标缺陷的球罐,采用此种模式,也可大大缩减开罐检验的时间,减少停产损失。然而,值得提醒的是,对于一些较小的表面裂纹,耐压试验过程中可能不产生声 发射定位源信号,因此,声发射检测有时不能发现小的表面裂纹。1.1表面检测表面检测方法是在球罐停产进行全面检验中首选的无损检测方法。表面检测的部位为球罐的对接焊缝、角焊缝、工卡具拆除处的焊迹表面等。铁磁性材料对接焊缝的表面一般采用磁粉检测方法,球罐的外部一般采用湿式黑磁粉检测,内部由于照明条件不好,通常采用荧光磁粉检测,角焊缝无法采用磁粉检测时可用渗透检测。非铁磁性材料的表面采用渗透检测,压力容器的内部采用荧光渗透检测,压力容器的外部采用着色渗透检测。根据多年的检验经验,球罐容易出现表面裂纹的部位主要有工卡具拆除处的焊迹表面、支柱角焊缝、安装时组装的最后一道环焊缝(一般为上极圈环焊缝)的外表面,介质液面部位的焊缝内表面。1.2 电磁涡流表面裂纹检测焊缝表面裂纹的磁粉或渗透检测都需要将被检焊缝表面事先进行清洁处理,除去表面防腐层或污垢,因此不适合球罐的在线检测。另外,球罐开罐100焊缝内外表面的检测发现,80以上的球罐无任何表面裂纹,即使发现表面裂纹的球罐,一般也是只存在几处表面裂纹,占焊缝总长的l以下,因此大量的打磨一方面增加了球罐停产检验的时间和费用,另一方面也减小了球罐焊缝部位壳体的壁厚。 采用涡流技术可在不去除表面涂层的情况下来探测金属材料的表面裂纹,然而,常规涡流方法只适用于检测表面光滑母材上的裂纹,对焊缝上的裂纹却会因焊缝在高温熔合时产生的铁磁性变化和焊缝表面高低不平而出现杂乱无序的磁干扰而无法检测。针对这些问题,人们研究出基于复平面分析的金属材料焊缝电磁涡流检测技术,在有防腐层时,也可用特殊的点式探头对焊缝表面进行快速扫描检测,而且提离效应对检测结果的影响很小79。 基于复平面分析的电磁涡流表面裂纹检测仪器采用电流扰动磁敏探头的涡流检测技术来检测焊缝的表面裂纹,此方法允许焊缝表面较为粗糙或带有一定厚度的防腐层,因此可用于球罐运行过程中的焊缝外表面裂纹的快速检测,也可用于球罐停产时的全面检验。这时可先采用该方法对焊缝进行快速检测,然后对可疑部位进行磁粉或渗透检测复验,以确定表面裂纹的具体部位和大小。目前市场上销售的仪器可在涂层0.2mm的情况下,检测灵敏度高于0.5mm深5mm长的表面裂纹;在有2mm涂层的情况下,检测灵敏度高于lmm深5mm长的表面裂纹;该仪器还可对5mm深的裂纹进行深度测定。1.3超声检测在用球罐的全面检验一般采用超声检测方法对对接焊缝进行抽查或100检测,以发现焊缝内部可能出现的疲劳裂纹或已存在的焊接埋藏缺陷,对于不易打开的球罐也可从外部检测球罐焊缝的内表面裂纹,对于球罐外部有保温覆盖层的情况,也可从球罐的内部对焊缝外表面出现的裂纹进行检测,但超声检测方法一般只能发现lmm深5mm长以上的表面裂纹。由于超声波探伤仪
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:1000m3天然气球罐设计
链接地址:https://www.renrendoc.com/p-34426452.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!