正文.doc

1103510kV降压变电站一次设计

收藏

压缩包内文档预览:(预览前20页/共49页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:34426761    类型:共享资源    大小:974.90KB    格式:ZIP    上传时间:2019-12-26 上传人:遗**** IP属地:湖北
40
积分
关 键 词:
1103510 kV 降压 变电站 一次 设计
资源描述:
1103510kV降压变电站一次设计,1103510,kV,降压,变电站,一次,设计
内容简介:
华北电力大学科技学院毕业设计(论文)任务书所在系别 电力工程系 专业班号 电气07K2班 学生姓名 张学丽 指导教师签名 审批人签字 毕业设计(论文)题目 110/35/10KV降压变电站一次设计 2011年 3月 18日一、毕业设计(论文)主要内容根据原始资料要求按照步骤对110KV变电站进行一次电气设计并得出相关结 果。具体步骤如下:1. 主变压器容量、型号及台数选择;2. 电气主接线设计;3. 短路电流计算;4. 一次电气设备选择;5. 屋内外配电装置设计;6. 防雷及接地系统设计;7. 总平面布置。二、基本要求1. 根据原始资料选择5-7种合理的电气主接线;2. 通过初步技术、经济比较,选择2种较好的电气主接线;3. 选择主变的容量、型号和台数;4. 计算两种电气主接线各个短路点的短路电流;5. 根据短路计算结果选择电气设备并进行必要的校验;6. 通过技术经济比较确定最佳方案;7. 屋内外配电装置设计;8. 绘制5-6张图纸,其中电气主接线、电气总平面布置、防雷与接地各一张,配电装置断面图2-3张。三、设计(论文)进度序号设计项目名称完成时间备注1查阅有关资料,学习与课题相关的内容,写出毕业设计的开题报告。 1周2主变容量台数及型式选择,电气主接线设计。23周3短路电流计算 ,一次电气设备选择。46周4屋内外配电装置设计,防雷接地设计,总平面布置。79周5整理相关资料,绘制图纸;撰写毕业论文。10周6准备答辩11周设计(论文)预计完成时间:2011年6月19日四、参考资料及文献1. 发电厂电气部分 四川联合大学2. 发电厂电气部分课程设计参考资料 中国电力出版社3. 电力工程设计手册(14分册) 中国电力出版社4. 发电厂变电所电气主接线和布置 西北电力设计院5. 发电厂变电所电气主接线设计 西安交通大学6. 其它资料自行查找5、 附录原始数据:1. 电压等级:110/35/10kV2. 出线回路110kV侧2回(架空线),35kV侧6回(架空线),10kV侧12回(其中电缆4回)。3. 负荷情况35kV侧:Smax=42MVA,=0.85,Smin=24MVA,=0.85,Tmax=5000h10kV侧:Smax=30MVA,=0.80,Smin=12MVA,=0.80,Tmax=4000h4.系统情况(1)系统经双回路给变电站供电;(2)系统110kV母线电压满足常调压要求;(3)系统短路电抗X*=0.1;5.环境条件(1)最高温度40,最低温度-10,年平均温度25(2)土壤电阻率 300 欧米 (3)当地雷暴日 30日/年华 北 电 力 大 学 科 技 学 院毕 业 设 计(论 文)附 件外 文 文 献 翻 译学 号: 071901010232 姓 名: 张学丽 所在系别: 电力工程系 专业班级: 电气07K2班 指导教师: 张建成 原文标题: Intelligent Alarm Processing And Fault Diagnosis in Digital Substations 2011年6月15日数字化变电站的智能警报处理和故障诊断1摘要当前的传统变电站有许多缺点,基于多主体结构的在数字式分站的传动装置和转换设备上的智能警报和故障诊断系统被提议出来。根据数字化变电站的建筑结构,信息流和数据流的特点,处理过程的事故,故障的层状特点等等,两个主要功能模块,即智能警报模块和传动装置以及转换设备的故障诊断模块,为了满足有层次地分析分站故障的作用需要而被设计出来。后来人们详细讨论了智能警告和故障诊断的代理以及它们之间的协调机制。最后,为了展示出这种方法的可行性和有效性而提出了理论分析和故障的处理提纲。索引词-多代理;数字化变电站;智能警报处理;故障诊断。1介绍变电站在电力系统中有重要作用。当在变电站中发生一个故障时,一大批的警报信息将会没有任何分析地在控制中心的控制台上展示出来,并且给调度员在短时间内分辨出故障种类造成困难。因此,在变电站中一个精确且有效的故障诊断方法是有重大意义的,是为了快速找出故障位置并且能用来保障电力系统的稳定性和安全性。到目前为止,提出的方法主要包括专家系统(ES)1-2,基于分析模型的方法3-6,人工神经网络(ANN)7-9,陪替式网络10,11,粗糙集12等等。IEC61850标准的应用和光学/电力转换器是数字化变电站实现的基础。通过智能电力设备可以将主要和次要设备结合在一起,这个大大改变了传统变电站的情况。因此,数字化变电站成为了智能管理以及变电站操作的研究重点。随着基于IEC61850的数字化变电站技术的成熟,已经实施了在中部教育区之间的互通性和信息共享,因此在变电站中能获得每个设备的状态。在数字式变电站中信息是丰富的,但是在没有有效的帮助工具的情况下,操纵员要透彻了解他们是困难的。被提议出来的一个在数字化变电站中传动装置和转换设备上的智能警告和故障诊断的系统是用来快速地发现故障并且用来评估运作信息的正确性。首先,在本文中分析IEC61850的特点。通过事故处理进程的特点和故障信息的层次体系,为满足能有层次地分析变电站故障的作用需要,设计出来了两个模块,即智能警报模块和传动装置、转换设备的故障诊断模块。最后,为了展示方法的可行性和有效性提出了理论分析和一个故障的提纲。1.原文出处及作者:lianbo Xin, Zhiwei Liao and Fushuan Wen. 2010 International Conference on Power System Technology12数字化变电站的技术特点A. 数字式变电站的体系结构IEC61850标准是变电站自动系统的最好的交流协议。人们意识到了在中部教育区之间的互通性和信息共享。IEC61850标准的特征包括:分层分布式结构,面向对象的建模和数据自描述。IEC61850标准逻辑上把系统分为三层:站控层,间隔层,过程层。由图1所示,在三个层次中定义了的九个逻辑接口。过程层的作用是转换取样和模拟可变物以及实施控制命令,这用到了逻辑接口4和5来和间隔层交流。间隔层的主要作用是测量,控制和保护主要设备,而且逻辑接口3和8被用在间隔层和用在相应地间隔层之间。此外,逻辑接口1,6和7被用在过程层和远程控制中心以及站控层之间。在所有层之间的信息相互作用都基于高速以太网。图1 变电站自动系统的接口模型在lEC61850标准中定义了统一的对象模型和信息交换模型。由于面向对象的模型法和数据自描述的作用,接收者没有解释数据的需要。这满足了筛选和分析智能警告以及故障诊断系统中的大量数据分析的需求。B.数字式变电站的信息流和数据流数字式变电站有许多种类的信息,主要包括实时传输信息,故障信息,非实时信息,视频监控信息,语音信息等等。在IEC61850标准中提出了变电站配置语言(SCL),这用来描述状态所指示的配置和参量以及完成数据交换。SCL基于扩大标注语言(XML)并且包括五部分:电力系统的结构模型,IED的结构模型,交流系统的结构模型,逻辑结(LN)的定义模型和逻辑结的关系模型以及主系统的功能。为了实现故障诊断功能,必须获得控制层数据服务器中的重要数据。图2给出了通信体系结构。图2 数据服务器的通讯建筑和故障诊断上边提到的交流系统分为三部分:信息模型、抽象服务和具体映射。1)信息模型为了代表在数字化变电站中的多种信息并实现其互通性及其在IED之间的信息共享,定义出了将近一百个相容的LNs(CPLN),20种共同数据类型(CDC)和三百种兼容数据类型(CPDC)。2)抽象服务抽象通信服务接口(ACSI)描述了服务器和客户之间的交流:实时数据的交换,案例报告,设备的自描述和文件传输。3)通信映射ACSI被映射到加工信息说明(MMS)。通过抽象对象方法,设备模型、抽象对象和它的特性都被MMS描述出来。映射方法如下:LD和LD被映射到范围内,而且分别地命名MMS的变量;DO和DA被映射到MMS的命名变量中的结构组件。最后,在SCL文件中的所有数据能被MMS传输出来。在数字化变电站中利用了普通面向对象的分站事件(GOOSE),这是利用网络通信来代替传统电缆传递实时信息的。3基于多代理故障诊断的结构代理是独立地经营的个体,它包括坚定的信念,承诺,责任和目的。它的基本特点是自动性,活动性 ,能动性和连续的实施性。如表3所示,根据数字式变电站的结构和信息流和数据流的特点,提议出了一个基于多代理的变电站新的故障诊断结构。被开发的系统包含通信代理、维护代理和诊断代理。诊断代理包含几个子代理:变电站诊断代理,变压器诊断代理,断路器诊断代理,线路诊断代理和综合诊断代理。每个代理有它自己的通信,数据获得,维护或确定的作用。此外,在数字化变电站中为完成故障诊断所有的代理能相互的合作。图3 基于多代理的故障诊断框架A.代理的通信机制代理的通信机制主要采用公共或订阅通信结构来完成代理间的信息交替。为实现点对点通信,通信结构支持多重代理。公共代理直接将信息传到用户,所以在系统中的其他代理不能接受到信息。如图四所示,模型采用基于公共或订阅通信结构的通信机制的事件驱动方式,这能控制时间顺序并且能实现实时应用。信息传输的时间间隔能被人工地设置。图4 基于公共或订阅结构的代理通信模式B.代理的数据获得通过故障诊断的数据特征,数据能被分成两类:静态数据和动态数据,如图五所示。静态数据包括主要、次要设备和规则库;动态数据包括操作数据,数据节和comtrade文件。图5 数据类型通过数据的不同的传输方式,数据可被分为两类:警报接收和文件接收,如表六所示。代理定期阅读所有信息然后更新数据库中的表格。图6 代理数据的获得C.代理的数据维护代理的数据维护是系统维护的重要内容之一,它包括资料内容维护、数据更新、数据的逻辑一致性等等。另外,代理的主要功能包括分析SCL文件,分析CIM文件,历史报警数据管理,管理COMTRADE文件以及维护规则库。分析SCL文件和CIM文件的模块用来提取SCL文件和CIM文件的信息然后写入数据库;历史报警数据和COMTRADE文件的模块是被用来查询的,存储和修改历史警报信息并且分别地处理文件;规则库的维护模块是为了实施规则中相应的用户定义规则。图7 数据维护代理人4故障诊断的实现在变电站中传输和变换设备的故障诊断主要是由诊断代理人支持,它包括变电站诊断代理人,变压器诊断代理人,断路器诊断代理人,线路诊断代理人和全面的诊断代理人。由于不是所有的代理人在故障后都可以获得信息,只有部分代理能运行。所有的子代理除了全面代理外能自主独立运行,全面代理需要其他代理的诊断结果。A. 变电站诊断代理人通过保护操作的警报信息,断路器动作,重合闸,二次设备等,在数字化变电站中变电站诊断代理人利用智能诊断方法和优化技术来找到故障原因。诊断原因包括变压器故障,线路故障,母线故障,二次设备故障等。B.变压器诊断代理人通过变压器油的色析法的实时监控信息,在变压器诊断代理中针对变压器故障诊断中用到了修改的三层方式。变压器的故障类型包括局部放电,低温过热(低于150C),中等温度过热,高温过热,低能量释放,电弧放电等等。C.断路器诊断代理人利用断路器的操作信息,实时监测信息,断路器的实时监测波文件,打开和关闭闸的线圈电流,开关的波文件,电动机的单向能量存储时间,电流波等等,在断路器诊断代理中建立了基于合成原则和专家知识库的地位特征集,这用在线路断路器的故障诊断中。诊断结果包括铁芯的精确度不同值,电阻型号,短路和当开关闸时线圈的烧断,谷的变形等等。D.线路诊断代理从COMTRADE文件中线路诊断代理引出故障电流,电压,时间连续信息等等然后利用线路诊断来实施故障选相,故障测距。E.全面诊断代理当四个中不止一个代理人,即变电站诊断代理,变压器诊断代理,短路器诊断代理和线路诊断代理,开始动作时,全面代理操作。为了全面诊断代理能综合地找到最终的结果用到了其他代理的诊断结果。5代理之间的协调机制在多代理之间的合作机制包括三个步骤如下:1) 维持代理能实现如下功能:分析SCL文件,分析CIM文件,管理历史警报数据,管理COMTRADE文件和维持规则库。2) 每个诊断代理能周期性地开始沟通,获得部分信息来实施实时的异常发现。然后故障可以在开始判断出来。3) 基于保护或断路器的操作警报,变电站诊断代理能实现故障定位和找出故障因素。然后为了详细设备诊断变压器故障诊断代理,断路器诊断代理、线路诊断代理开始动作。例如,当在变压器发生故障时变压器诊断代理开始动作,当收到断路器操作警报时断路器代理动作,当线路故障时线路诊断代理动作。通过以上不同代理的结果,全面诊断代理是为了全面的分析故障并给出最后的结果。6案例分析图8 110KV数字化变电站的单线图为了演示基于多代理的故障诊断系统提供了一个数字式变电站的真实的故障案例。在表八中给出了变电站的一部分。故障分析过程如下:1) 在2010年2月10日七点三十分二十五秒770毫秒从同一基准信息平台上收到一个从变电站诊断代理发出的保护警报“PCOSP110LINE1/Q0PTOC1$ST$Op$general”。2) 在变电站诊断代理中提出了基于公共/用户结构的信息交流功能而且在数据维持代理中找出在SCL数据分析功能收到的警报的描述,这就是“线路1操作的主保护”。3) 为了判断变电站诊断代理的可能的原因用到了优化技术:保护继电器是故障的;线路1不能工作而且有错过的警报;线路1不能工作而且断路器111不能动作。4) 通过以上诊断结果,断路器诊断代理和线路诊断代理开始动作。断路器诊断代理得到分析断路器111的实时监测波文件然后给出断路器正常的结果。线路诊断代理得到并分析线路1的COMTRADE文件然后给出在线路1的单相短路故障发生的结果。通过变电站诊断代理的结果,断路器诊断代理和线路诊断代理,全面诊断代理给出最终结果:在线路1发生单相短路故障而且有遗失警报。7结论通过对数字化变电站的结构、信息流和数据流的特点、事故处理方法、故障信息的层次特点等等的分析,在数字化变电站中提出了基于多代理结构的传输装置和传输设备的智能警报和故障分析系统。这个系统能满足分层次地分析变电站故障的功能需求。最后,为证明其可行性和当前方式的有效性提供了理论分析和故障情景。192010 International Conference on Power System TechnologyIntelligent Alarm Processing and Fault Diagnosis in Digital Substationslianbo Xin, Zhiwei Liao and Fushuan WenAbstract-For the present situation of the traditional substation has many drawbacks, a system of intelligent alarm and fault diagnosis for transmission and transformation equipments in the digital substation is proposed in this work based on the multiagents structure.According to the architecture of the digital substation, the characteristic of information flow and data flow, the accident handling process, the layered feature of the fault information and so on, two main function modules, i.e., the intelligent alarm module and the transmission and transformation equipments fault diagnosis module, are designed for satisfying the function need of analyzing the substation fault hierarchically. Then the agents of the intelligent alarm and fault diagnosis, and the coordination mechanism between them are discussed in detail.Finally, the theoretical analysis and a fault scenario are served for demonstrating the feasibility and validity of the method presented.Index Terms- multi-agents; digital substation; Intelligent Alarm Processing ; fault diagnosis.I. INTRODUCTIONSubstations play an important role in power systems. When a fault occurs in a substation, a flood of alarm information could be displayed without any analysis on the console in the control center, and lead to the difficulty for dispatchers to identify the faulted section in a short time. Therefore, an accurate and efficient method of fault diagnosis in substation is significant for rapid fault location and hence assures the stability and security of power system. So far, the presented approaches mainly includes Expert Systems (ES) 1-2, analytic model based approaches 3-6, Artificial Neural Networks (ANN) 7-9, Petri Nets10,11, Rough Set 12 and so on.The application of the IEC61850 standard and the Optical / Electronic Transformers are the fundament for realization of digital substation. The primary and secondary equipments can be combined by the intelligent electronic devices (IEDs), which change the situation of the traditional substation greatly. Consequently, the digital substation becomes the research focus of intelligent management and operation of the substation.With the maturity of digital substations technology based on IEC61850 standard, the interoperability and information sharing between the IEDs is implemented, and hence the states of each equipment in substations can be obtained. The information in the digital substation is rich, but it is difficult for the operators to digest them in a short time without an effective assistant tool. A system of intelligent alarm and fault diagnosis for transmission and transformation equipments in the digital substation is proposed in this work, which is used to find the fault cause quickly and evaluate the correctness of the operation information.First, the characteristics of IEC61850 are analyzed in this paper. According to the characteristics of the accident handling process and the hierarchy of fault information, two modules, i.e., the intelligent alarm module and the transmission and transformation equipments fault diagnosis module, are designed for satisfying the function need of analysising the substation fault hierarchically. Finally, a fault scenario is served for demonstrating the feasibility and validity of the method presentedII. THE CHARACTERISTICS OF DIGITAL SUBSTATIONS TECHNOLOGYA. The architecture of digital substationsThe IEC61850 standard is the most perfect communication protocol for the substation automation system. The interoperability and information-sharing between the IEDs are realized. The characteristics of the IEC61850 standard include: the distributed structure; object-oriented modeling and data self-describing.The IEC61850 standard logically divides the system into three layers: control layer, bay layer and process layer. As shown in Fig.1, nine logical interfaces between the three layers are defined. The function of the process layer is to sample the switching and the analog variables and carry out the control commands, which uses the logical interfaces and to communicate with the bay layer. The main function of the bay layer is to measure, control and protect the primary equipments, and the logical interfaces and are used in the bay layer and between the bay layers respectively. Moreover, the logical interfaces CD, and (J) are used for the communication between the bay layer and the remote control center and the control layer. The information interactions between all the layers are based on the fast Ethernet.Fig.1 The interface model of the Substation Automation SystemThe unified object model and the information exchange model are defined in the lEC61850 standard. Due to the object-oriented modeling approach and function of data self-describing,there is no need for the recipients to explain thedata. It satisfies the need of filtering and analyzing the mass data of the intelligent alarm and fault diagnosis system.B. The informationflow and dataflow of digital substationThe digital substation has various kind of information, mainly including the real-time transmission information, fault information, non-real-time information, video monitoring information, voice information and so on.The substations configuration language (SCL) is proposed in the IEC61850 standard, which is used to describe the configuration and the parameters of lEDs and implement the data interchange. The SCL is based on the extend markup language (XML) and includes five objects: structure model of power system, structure model of lED, structure model of communication system, definition model of the Logic Node (LN) and relational model of LN and the function of the primary system.In order to realize the function of fault diagnosis, the relevant data in the data server of the control layer must be obtained. The communication architecture is shown in Fig.2.Fig.2 The communication architecture of the data server and fault diagnosisThe above-mentioned communication systems are divided into three parts: information modeling, abstract service and specific mapping.1) information modelingNearly one hundred compatible LNs (CPLN), twenty kindsof common data type (CDC) and three hundreds kinds of compatible data type (CPDC) are defined for representing kinds of information in the digital substation and implementing the interoperability and information-sharing between the IEOs.2) abstract serviceAbstract communication service interface (ACSI) describes communication between the server and client: exchange of real-time data, case report, the self-describing of device and the transmission of files.3) communications mappingThe ACSI is mapped into the manufacturing message specification (MMS). According to the abstract object method, the device model, abstract object and its properties are described by the MMS. The mapping method is as follows: the LO and LN are mapped to the territory and the naming variable of MMS respectively; DO and OA are mapped to the structure constituent of the naming variable of MMS. Consequently, all the data in the SCL file can be transmitted by the MMS.The Generic Object Oriented Substation Event (GOOSE) is utilized in the digital substation, which uses the network communication to replace the traditional cable to transmit the real-time information.III. STRUCTURE BASED ON MULTI-AGENTS FAULT DIAGNOSISAgent is an entity that operates independently, which includes the conviction, promise, obligation, and purpose. Its basic characteristics are automaticity, reactiveness, motilityand continuous implementing. As shown in Fig.3, a new framework of fault diagnosis for substation based on the multi-agents is proposed according to the architecture of the digital substation and the characteristic of information flow and data flow. The developed system consists of communication agent, maintaining agent and diagnosis agent. The diagnosis agent consists of several subagents: the substation diagnosis agents, the transformer diagnosis agents, the breaker diagnosis agents, the line diagnosis agents and the comprehensive diagnosis agents. Each agent has its own communication, data obtaining, maintaining or determining function. Moreover, all the agents can cooperate reciprocally to implement the fault diagnosis in the digital substation.Fig.3 The framework of fault diagnosis based on multi-agentsA. The communication mechanism of agents The communication mechanism of agents mainly adopts the public/subscribe communication structure to implement the information alternation between the agents. The communication structure supports multiple agents for point-to-point communication. The public agent transmits the information to the subscriber directly and so other agents in the system can not receive the information.As shown in FigA, the model uses the event-driven mode based on communication mechanism of the public/subscribe communication structure, which is able to control the time sequence and realize the real-time application. The time lag of the information transmission can be set artificially.Fig.4 The communication mode of agents based on the publisher / subscriber structureB. The data obtaining of agentsAccording to the characteristic of the data of fault diagnosis, the data can be categorized into two types: the static data and the dynamic data as shown in Fig.5. The static data includes primary/secondary equipments and the rule base; the dynamicdata consists of operational data, section data and comtrade file.Fig.5 Data typeAccording to the different transmission mode of data, the data can be categorized into two kinds: the alarm data and the file data. Therefore, the data obtaining of agent includes two modes: the alarm receiving and the file receiving as shown in Fig.6. The agent read all the information periodically and then update the table in the database.Fig.6 The acquisition of the agent dataC. Data maintenance of agentsThe data maintenance of agent is one of the important contents of system maintenance, which includes data content maintenance, data update, data logical consistency and so on. Besides, the main function of the agent consists of analyzing the SCL file, analyzing the CIM file, managing the history alarm data, managing the comtrade file and maintaining the rule base.The modules of analyzing the SCL file and the CIM file are used to extract the information in the SCL file and CIM file and then write to the database; the module of managing history alarm data and the comtrade file are used to inquire, store and modify the history alarm information and the comtrade file respectively; the module of rule base maintenance is to implement the user-defined rules for the rule base.Fig.7 The data maintenance agentIV. REALIZATION OF FAULT DIAGNOSISThe fault diagnosis for transmission and transformation equipments in substation is mainly supported by the diagnosis agent, which includes the substation diagnosis agents, the transformer diagnosis agents, the breaker diagnosis agents, the line diagnosis agents and the comprehensive diagnosis agents. Since not all the agents could get the information after an accident, only parts of the agents would operate. All the subagents can operate independently except the comprehensive one, which needs the diagnosis results of others.A. Substation diagnosis agentWith alarm information of the protection operation, breaker operation, reclosing, secondary equipments and so on, the substation diagnosis agent utilizes the intelligent diagnosis approaches and optimization technology to find the fault cause in the digital substation. The diagnosis results include the transformer fault, the line fault, the bus fault, the secondary equipments fault and so on.B. Transformer diagnosis agentWith the real-time monitoring information of chromatographic of the transformer oil, the modified threeratio method is used in the transformer diagnosis agent for fault diagnosis of the transformer. The fault types of transformer includes partial discharge, low temperature overheating (lower than ISO C ), medium temperature overheating, high temperature overheating, low energy discharge, arc discharge, arc discharge and so on.C. Breaker diagnosis agentWith exploiting the breaker operation information, the real-time monitoring information, the real-time monitoring wave files of breakers, the coil current of the open and close brake, the wave files of the switch, the single power storage time of electrical motor, the current wave and so on, the status feature set is built up based on the synthesis principle and the expert knowledge base in the breaker diagnosis agent, which is used for fault diagnosis of the circuit breaker. The diagnosis results includes the precision difference value of iron core, the size of resistance, short circuit and bum down of the coil of the open and close brake, transmutation of the vale and so on.D. Line diagnosis agentThe line diagnosis agent extracts the fault current, voltage, time sequence information and so on from the Comtrade file and then use the line diagnosis approaches to implement fault phase selection, fault range acquisition.E. Comprehensive diagnosis agentWhen more than one of four agents, i.e., the substation diagnosis agent, transformer diagnosis agent, breaker diagnosis agent and line diagnosis agent, is started, the comprehensive agent operates. The diagnosis results of other agents are used for the comprehensive agent to find the final results synthetically.V. THE COORDINATION MECHANISM BETWEEN AGENTSThe collaboration mechanism between multi-agents includes three steps as follows:1) The maintenance agent can realize the following functions: analyzing the SCL file, analyzing the ClM file, managing the history alarm data, managing the comtrade fileand maintaining the rule base.2) Each diagnosis agent can start the communication periodically and get the section information to implement the real-time abnormality detection. Then the fault can be judged preliminarily.3) Based on the protection or breaker operation alarm, the substation diagnosis agent can realize the fault location and find the fault element. Then the transformer diagnosis agent, breaker diagnosis agent or (and) line diagnosis agent is (are) started for detail equipment diagnosis. For instance, the transformer diagnosis agent is started when a fault happens at the transformer; the breaker diagnosis agent is started when abreaker operation alarms is received; the line diagnosis agent is started when a line is failed. According to the above results of different agents, the comprehensive diagnosis agent is served to analysis the fault synthetically and give the final results.VI. CASE ANALYSISFig.8 The single line diagram of a 110kV digital substationA real fault case of a digital substation is served for demonstrating the fault diagnosis system based on the multi-agents. Part of the substation is showed in Fig.8. The analysis process of the fault case is as follows:1) A protection operation alarm PCOS PII OLlNEI/QOPTOCI $ST$Op$general is received from the unified data information platform by the substation diagnosis agent at 2010-02-10 07:30:25 770 ms.2) The communication function based on the public/subscriber structure is started by the substation diagnosis agent and then finds the description of the received alarm in the SCL data analysis function of the data maintenance agent, which is The main protection of Line I operated.3) The optimization technology is used to judge the possible causes by the substation diagnosis agent: the protection relay is malfunction; Line I is failed and there are miss alarms; Line 1 is failed and the breaker III fails to operate.4) According to above the diagnosis results, the breaker diagnosis agent and the line diagnosis agent are started. The breaker diagnosis agent gets and analysis the real-time monitoring wave file of breaker III and then gives the result that the breaker is normal. The line diagnosis agent gets and analysis the comtrade file of Line 1 and then gives the result that a single phase short circuit fault occurs in Line I.5) With the results of the substation diagnosis agent, breaker diagnosis agent and line diagnosis agent, the comprehensive diagnosis agent gives the final result: a single phase short circuit fault occurs in Line I and there are miss alarms.VII. CONCLUSIONAccording to the architecture of the digital substation, the characteristic of information flow and data flow, the accident handling process, the layered feature of the fault information and so on, a system of intelligent alarm and fault diagnosis for transmission and transformation equipments in the digital substation is proposed in this work based on the multi-agents structure. The system can satisfY the function need of analyzing the substation fault hierarchically. Finally, the theoretical analysis and a fault scenario are served for demonstrating the feasibility and validity of the presented method.VIII. REFERENCES1 J. W Jung, C C Liu, M. G. Hong, M. Gallanti, and G. Tornielli.Multiple hypotheses and their credibility in on-line fault diagnosis.IEEE Transactions on Power Delivery, vol. 16, no. 2, pp. 225-230, Apr.20012 H. 1. Lee, B. S. Ahn, and Y. M. Park, A fault diagnosis expert system for distribution substations.IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 92-97, Jan. 2000.3 WEN Fushuan, CHANG C S Tabu search approach to alarm processing in power systems. lEE Proceedings: Generation, Transmission and Distribution, 1997, 144(1) 31-38.4 F. S. Wen and C S. Chang. A new approach to time constrained fault diagnosis using the Tabu search method. Journal of Engineering Intelligent Systems, vol. 10, no. 1, pp. 19-25,2002.5 D. Srinivasan, R. L. Cheub, Y. P Poh, and A. K. eNg. Automated fault detection in power distribution networks using a hybrid fuzzygenetic algorithm approach. Engineering Applications of Articial Intelligence, Aug. 2000, vol. 13, no. 4, pp. 407-418.6 Z Y. He, H. D. Chiang, C W Li, and Q. F. Zeng. Fault-section estimation in power systems based on improved optimization model and binary particle swarm optimization. IEEE Power & Energy Society General Meeting, Calgary,
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:1103510kV降压变电站一次设计
链接地址:https://www.renrendoc.com/p-34426761.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!