




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章基本初等函数 2 2 1对数与对数运算 四 指数 真数 底数 对数 幂 底数 指数式 对数式 复习 性质 负数和 没有对数 指数运算法则 设 由对数的定义可以得 即得 积 商 幂的对数运算法则 如果a 0 a 1 m 0 n 0有 证明 设 由对数的定义可以得 即证得 上述证明是运用转化的思想 先通过假设 将对数式化成指数式 并利用幂的运算性质进行恒等变形 然后再根据对数定义将指数式化成对数式 简易语言表达 积的对数 对数的和 有时逆向运用公式 真数的取值范围必须是 对公式容易错误记忆 要特别注意 例 解 1 解 2 用 表示下列各式 1 4 3 2 练习2 求下列各式的值 1 练习3计算 解法一 解法二 2 计算 解 练习4 用lg lg lg 表示下列各式 1 4 3 2 其他重要公式1 证明 设 由对数的定义可以得 即证得 其他重要公式2 证明 设 由对数的定义可以得 即证得 换底公式 练习5 解 3 其他重要公式3 证明 由换底公式 取以b为底的对数得 还可以变形 得 小结 积 商 幂的对数运算法则 如果a 0 a 1 m 0 n 0有 其他重要公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 41304.3-2025知识管理方法和工具第3部分:会议知识管理
- 2025年国家林草局招考笔试核心题
- 2025年机械安全员B考试高频题库突破
- 2024-2025学年泗阳县中考猜题数学试卷含解析
- 草坪园艺技术使用中常见问题
- 全国政治学术演讲会发言模板
- 2025年汽车维修技术员技能考核试题及答案解析
- 2025年国家中医药博物馆招聘面试模拟题及答案
- 2025年平面广告设计师职业能力鉴定试题及答案解析
- 2025年小学安全知识常见题及答案
- 5步打造孩子内驱力
- 物业管理项目可行性分析报告(模板参考范文)
- 贷款中介代办协议书
- 认知铁路中间站和区段站铁道概论37课件
- 骨牵引护理课件
- 智能垃圾分类与回收机器人企业制定与实施新质生产力战略研究报告
- 九年级培优班家长会课件
- 筋膜刀培训课件
- QGDW11337-2023输变电工程工程量清单计价规范
- 水质仪表维护培训课件
- 网络静态与动态路由比较试题及答案
评论
0/150
提交评论