高三数学一轮复习 第十章 第九节 离散型随机变量的均值与方差、正态分布课件 理 新人教A版 .ppt_第1页
高三数学一轮复习 第十章 第九节 离散型随机变量的均值与方差、正态分布课件 理 新人教A版 .ppt_第2页
高三数学一轮复习 第十章 第九节 离散型随机变量的均值与方差、正态分布课件 理 新人教A版 .ppt_第3页
高三数学一轮复习 第十章 第九节 离散型随机变量的均值与方差、正态分布课件 理 新人教A版 .ppt_第4页
高三数学一轮复习 第十章 第九节 离散型随机变量的均值与方差、正态分布课件 理 新人教A版 .ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九节离散型随机变量的均值与方差 正态分布 数学期望 3 两点分布与二项分布的均值 方差 p 1 p np 1 p p np 上方 x x 1 4 正态总体三个基本概率值 p x p 2 x 2 p 3 x 3 0 6826 0 9544 0 9974 1 随机变量的均值 方差与样本均值 方差的关系是怎样的 提示 随机变量的均值 方差是一个常数 样本均值 方差是一个变量 随观测次数的增加或样本容量的增加 样本的均值 方差趋于随机变量的均值与方差 2 若x n 0 100 y n 0 81 你能比较p x 1 与p y 1 的大小吗 提示 因为100 81 所以x对应的正态曲线 矮胖 y对应的正态曲线 瘦高 并且两曲线的对称轴相同 故p x 1 p y 1 1 人教a版教材习题改编 已知随机变量 服从正态分布n 2 2 p 4 0 84 则p 0 a 0 16b 0 32c 0 68d 0 84 解析 p 4 0 84 2 p 0 p 4 1 0 84 0 16 答案 a 3 已知x的分布列为 答案 a 3 2013 珠海模拟 某射手射击所得环数 的分布列如下 已知 的期望e 8 9 则y的值为 答案 0 4 4 马老师从课本上抄录一个随机变量 的概率分布列如下表 请小牛同学计算 的数学期望 尽管 处完全无法看清 且两个 处字迹模糊 但能断定这两个 处的数值相同 据此 小牛给出了正确答案e 解析 设p 1 x 则p 3 x 由分布列性质 p 2 1 2x 因此e 1 x 2 1 2x 3 x 2 答案 2 已知随机变量 服从正态分布n 2 2 且p 4 0 8 则p 0 2 a 0 6b 0 4c 0 3d 0 2 思路点拨 根据正态曲线的对称性求解 答案 c 1 求解本题关键是明确正态曲线关于x 2对称 且区间 0 4 关于x 2对称 2 关于正态曲线在某个区间内取值的概率求法 1 熟记p x p 2 x 2 p 3 x 3 的值 2 充分利用正态曲线的对称性和曲线与x轴之间面积为1 若在本例中 条件改为 已知随机变量 n 3 1 且p 2 4 0 6826 求p 4 的值 2013 揭阳模拟 学校游园活动有这样一个游戏项目 甲箱子里装有3个白球 2个黑球 乙箱子里装有1个白球 2个黑球 这些球除颜色外完全相同 每次游戏从这两个箱子里各随机摸出2个球 若摸出的白球不少于2个 则获奖 每次游戏结束后将球放回原箱 1 求在1次游戏中 摸出3个白球的概率 获奖的概率 2 求在2次游戏中获奖次数x的分布列及数学期望e x 与方差d x 离散型随机变量的均值与方差 思路点拨 1 获奖则摸出2个白球或摸出3个白球 利用互斥事件概率加法不难求解 2 在2次游戏中 获奖的次数x服从二项分布 进而可求分布列与数学期望 所以x的分布列是 1 本题求解的关键在于求一次游戏中获奖的概率 要正确利用互斥事件和相互独立事件概率计算公式 2 求离散型随机变量的均值与方差的方法 1 先求随机变量的分布列 然后利用均值与方差的定义求解 2 若随机变量x b n p 则可直接使用公式ex np dx np 1 p 求解 2012 江西高考 如图10 9 1 从a1 1 0 0 a2 2 0 0 b1 0 1 0 b2 0 2 0 c1 0 0 1 c2 0 0 2 这6个点中随机选取3个点 将这3个点及原点o两两相连构成一个 立体 记该 立体 的体积为随机变量v 如果选取的3个点与原点在同一个平面内 此时 立体 的体积v 0 1 求v 0的概率 2 求v的分布列及数学期望ev 思路点拨 对投资项目的评判 首先从收益的期望值进行比较 若相同 则进一步选择方差较小的投资项目 尝试解答 1 若按 项目一 投资 设获利为 1万元 则 1的分布列为 1 1 解决此类题目的关键是正确理解随机变量取每一个值所表示的具体事件 求得该事件发生的概率 列出分布列 2 第 2 问中易忽视2012年年初投资与总资产的年底核算 错误回答2016年年底翻一番 2 随机变量的期望反映了随机变量取值的平均水平 方差反映了随机变量稳定于均值的程度 它们从整体和全局上刻画了随机变量 是生产实际中用于方案取舍的重要理论依据 一般是先分析比较均值 若均值相同 再用方差来决定 2012 课标全国卷 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花 然后以每枝10元的价格出售 如果当天卖不完 剩下的玫瑰花作垃圾处理 1 若花店一天购进16枝玫瑰花 求当天的利润y 单位 元 关于当天需求量n 单位 枝 n n 的函数解析式 2 花店记录了100天玫瑰花的日需求量 单位 枝 整理得下表 以100天记录的各需求量的频率作为各需求量发生的概率 若花店一天购进16枝玫瑰花 x表示当天的利润 单位 元 求x的分布列 数学期望及方差 若花店计划一天购进16枝或17枝玫瑰花 你认为应购进16枝还是17枝 请说明理由 x的数学期望为ex 60 0 1 70 0 2 80 0 7 76 x的方差为dx 60 76 2 0 1 70 76 2 0 2 80 76 2 0 7 44 答案一 花店一天应购进16枝玫瑰花 理由如下 若花店一天购进17枝玫瑰花 y表示当天的利润 单位 元 那么y的分布列为 y的数学期望为ey 55 0 1 65 0 2 75 0 16 85 0 54 76 4 y的方差为dy 55 76 4 2 0 1 65 76 4 2 0 2 75 76 4 2 0 16 85 76 4 2 0 54 112 04 由以上的计算结果可以看出 dx dy 即购进16枝玫瑰花时利润波动相对较小 另外 虽然ex ey 但两者相差不大 故花店一天应购进16枝玫瑰花 答案二 花店一天应购进17枝玫瑰花 理由如下 若花店一天购进17枝玫瑰花 y表示当天的利润 单位 元 那么y的分布列为y的数学期望为ey 55 0 1 65 0 2 75 0 16 85 0 54 76 4 由以上的计算结果可以看出 ex ey 即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润 故花店一天应购进17枝玫瑰花 1 若x服从二项分布 即x b n p 则e x np d x np 1 p 2 若x服从正态分布 即x n 2 要充分利用正态曲线的对称性和曲线与x轴之间的面积为1 1 e ax b ae x b a b为常数 2 e x1 x2 e x1 e x2 3 d ax b a2d x a b为常数 1 已知随机变量的分布列求它的均值 方差和标准差 可直接按定义 公式 求解 2 已知随机变量 的均值 方差 求 的线性函数 a b的均值 方差和标准差 可直接用 的均值 方差的性质求解 3 如能分析所给随机变量是服从常用的分布 如两点分布 二项分布等 可直接利用它们的均值 方差公式求解 从近两年的高考试题来看 离散型随机变量的均值与方差是高考的热点 题型为填空题或解答题 属中档题 常与排列 组合 概率综合命题 考查学生的理解能力与数学运算能力 预计2014年高考 离散型随机变量的均值与方差仍是高考的重点 注重与统计的交汇和实际的应用是命题的方向 易错辨析之十九不能正确理解题目条件致误 2012 湖北高考 根据以往的经验 某工程施工期间的降水量x 单位 mm 对工期的影响如下表 历年气象资料表明 该工程施工期间降水量x小于300 700 900的概率分别为0 3 0 7 0 9 求 1 工期延误天数y的均值与方差 2 在降水量x至少是300的条件下 工期延误不超过6天的概率 错解 1 由已知条件和概率的加法公式有 p x 300 0 3 p 300 x 700 p x 700 p x 300 0 7 0 3 0 4 p 700 x 900 p x 900 p x 700 0 9 0 7 0 2 p x 900 1 p x 900 1 0 9 0 1 所以y的分布列为 于是 e y 0 0 3 2 0 4 6 0 2 10 0 1 3 d y 0 3 2 0 3 2 3 2 0 4 6 3 2 0 2 10 3 2 0 1 9 8 故工期延误天数y的均值为3 方差为9 8 2 由 1 知 在降水量x至少是300mm条件下 工期不超过6天的概率为p p y 2 p y 6 0 4 0 2 0 6 错因分析 1 第 2 问中 在降水量x至少是300mm的条件下 这一条件说明是在延误工期的条件下 求工期延误不超过6天的概率 错解中没有在这条件下求概率 2 本题在求e y 和d y 中易出现计算错误 防范措施 1 求某事件概率 首先理解题意 分清概率模型 恰当选择概率计算公式 本题是条件概率 应利用条件概率公式计算 2 解决期望和方差问题时 认真计算 正确利用期望和方差公式 避免失误 1 2012 课标全国卷 某一部件由三个电子元件按如图10 9 2所示方式连接而成 元件1或元件2正常工作 且元件3正常工作 则部件正常工作 设三个电子元件的使用寿命 单位 小时 均服从正态分布n 1000 502 且各个元件能否正常工作相互独立 那么该部件的使用寿命超过1000小时的概率为 2 2012 福建高考 受轿车在保修期内维修费等因素的影响 企业生产每辆轿车的利润与该轿车首次出现故障的时间有关 某轿车制造厂生产甲 乙两种品牌轿车 保修期均为2年 现从该厂已售出的两种品牌轿车中各随机抽取5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论