云南省广南县篆角乡初级中学九年级数学上册 22.3 实际问题与二次函数课件1 (新版)新人教版.ppt_第1页
云南省广南县篆角乡初级中学九年级数学上册 22.3 实际问题与二次函数课件1 (新版)新人教版.ppt_第2页
云南省广南县篆角乡初级中学九年级数学上册 22.3 实际问题与二次函数课件1 (新版)新人教版.ppt_第3页
云南省广南县篆角乡初级中学九年级数学上册 22.3 实际问题与二次函数课件1 (新版)新人教版.ppt_第4页
云南省广南县篆角乡初级中学九年级数学上册 22.3 实际问题与二次函数课件1 (新版)新人教版.ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22 3实际问题与二次函数 1 2 二次函数y ax2 bx c的图象是一条 它的对称轴是 顶点坐标是 当a 0时 抛物线开口向 有最点 函数有最值 是 当a 0时 抛物线开口向 有最点 函数有最值 是 抛物线 上 小 下 大 高 低 1 二次函数y a x h 2 k的图象是一条 它的对称轴是 顶点坐标是 抛物线 直线x h h k 基础扫描 3 二次函数y 2 x 3 2 5的对称轴是 顶点坐标是 当x 时 y的最值是 4 二次函数y 3 x 4 2 1的对称轴是 顶点坐标是 当x 时 函数有最值 是 5 二次函数y 2x2 8x 9的对称轴是 顶点坐标是 当x 时 函数有最值 是 直线x 3 3 5 3 小 5 直线x 4 4 1 4 大 1 直线x 2 2 1 2 小 1 基础扫描 矩形场地的周长是60m 一边长为l 则另一边长为 场地的面积 用总长为60m的篱笆围成矩形场地 矩形面积s随矩形一边长l的变化而变化 当l是多少时 场地的面积s最大 即 可以看出 这个函数的图象是一条抛物线的一部分 这条抛物线的顶点是函数的图象的最高点 也就是说 当l取顶点的横坐标时 这个函数有最大值 由公式可求出顶点的横坐标 分析 先写出s与l的函数关系式 再求出使s最大的l值 s l 30 l s l2 30l 0 l 30 也就是说 当l是15m时 场地的面积s最大 s 225m2 因此 当时 s有最大值 s l2 30l 0 l 30 一般地 因为抛物线的顶点是最低 高 点 所以当时 二次函数有最小 大 值 某商品现在的售价为每件60元 每星期可卖出300件 市场调查反映 每涨价1元 每星期少卖出10件 每降价1元 每星期可多卖出18件 已知商品的进价为每件40元 如何定价才能使利润最大 来到商场 请大家带着以下几个问题读题 1 题目中有几种调整价格的方法 2 题目涉及到哪些变量 哪一个量是自变量 哪些量随之发生了变化 某商品现在的售价为每件60元 每星期可卖出300件 市场调查反映 每涨价1元 每星期少卖出10件 每降价1元 每星期可多卖出18件 已知商品的进价为每件40元 如何定价才能使利润最大 来到商场 分析 调整价格包括涨价和降价两种情况 先来看涨价的情况 设每件涨价x元 则每星期售出商品的利润y也随之变化 我们先来确定y与x的函数关系式 涨价x元时则每星期少卖件 实际卖出件 销额为元 买进商品需付元 因此 所得利润为 10 x 300 10 x 60 x 300 10 x 40 300 10 x y 60 x 300 10 x 40 300 10 x 元 即 0 x 30 0 x 30 所以 当定价为65元时 利润最大 最大利润为6250元 由 1 2 的讨论及现在的销售情况 你知道应该如何定价能使利润最大了吗 在降价的情况下 最大利润是多少 请你参考 1 的过程得出答案 解 设降价x元时利润最大 则每星期可多卖18x件 实际卖出 300 18x 件 销售额为 60 x 300 18x 元 买进商品需付40 300 10 x 元 因此 得利润 0 x 20 答 综合以上两种情况 定价为65元时可获得最大利润为6250元 某商店购进一批单价为20元的日用品 如果以单价30元销售 那么半个月内可以售出400件 根据销售经验 提高单价会导致销售量的减少 即销售单价每提高1元 销售量相应减少20件 售价提高多少元时 才能在半个月内获得最大利润 解 设售价提高x元时 半月内获得的利润为y元 则y x 30 20 400 20 x 20 x2 200 x 4000 20 x 5 2 4500 当x 5时 y最大 4500答 当售价提高5元时 半月内可获最大利润4500元 我来当老板 牛刀小试 某果园有100棵橙子树 每一棵树平均结600个橙子 现准备多种一些橙子树以提高产量 但是如果多种树 那么树之间的距离和每一棵树所接受的阳光就会减少 根据经验估计 每多种一棵树 平均每棵树就会少结5个橙子 若每个橙子市场售价约2元 问增种多少棵橙子树 果园的总产值最高 果园的总产值最高约为多少 创新

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论