铜套.dwg
铜套.dwg

异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计【含全套CAD图纸】【答辩毕业资料】

收藏

资源目录
跳过导航链接。
异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计【含全套CAD图纸】【答辩毕业资料】.rar
铜套.dwg---(点击预览)
装配图.dwg---(点击预览)
衬套2.dwg---(点击预览)
衬套1.dwg---(点击预览)
行星轴.dwg---(点击预览)
行星轮2.dwg---(点击预览)
箱体外侧.dwg---(点击预览)
箱体内侧.dwg---(点击预览)
秧针.dwg---(点击预览)
法兰.dwg---(点击预览)
毕业论文.pdf---(点击预览)
栽植臂后盖.dwg---(点击预览)
摘要.pdf---(点击预览)
推秧爪.dwg---(点击预览)
推秧杆.dwg---(点击预览)
拨叉轴.dwg---(点击预览)
弹簧座.dwg---(点击预览)
左箱体外侧.dwg---(点击预览)
左箱体内侧.dwg---(点击预览)
左拨叉.dwg---(点击预览)
左定位板.dwg---(点击预览)
左凸轮.dwg---(点击预览)
左侧行星轮.dwg---(点击预览)
左侧法兰.dwg---(点击预览)
左侧太阳轮.dwg---(点击预览)
左侧中间非圆齿轮.dwg---(点击预览)
左侧中间斜齿轮.dwg---(点击预览)
密封塞.dwg---(点击预览)
太阳轮.dwg---(点击预览)
右拨叉.dwg---(点击预览)
右定位板.dwg---(点击预览)
右凸轮.dwg---(点击预览)
中间非圆齿轮.dwg---(点击预览)
中间斜齿轮.dwg---(点击预览)
附件
压缩包内文档预览:
预览图
编号:346961    类型:共享资源    大小:6.40MB    格式:RAR    上传时间:2014-10-23 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
异形 圆锥 齿轮 行星 水稻 宽窄 行分插 机构 设计 全套 cad 图纸 答辩 毕业 资料
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763



第 1 章 .绪论 ............................................................................................................................... 1
1.1 前言 ................................................................................................................................... 1
1.2 宽窄行分插机构的发展状况 ............................................................................................ 1
1.3 课题研究内容 ................................................................................................................... 4
1.4 本章小结 ........................................................................................................................... 5
第 2 章 .宽窄行分插机构设计的分析 .................................................................................. 6
2.1 宽窄行插秧达到的效果和机构工作原理 ........................................................................ 6
2.1.1 宽窄行分插机构达到的效果 ............................................................................... 6
2.1.2 分插机构的工作原理 ........................................................................................... 6
2.2 宽窄行分插机构的运动要求 ............................................................................................ 8
2.3 分插机构的数学建模及参数确定 ................................................................................... 9
2.3.1 非圆锥齿轮齿轮节曲线表示 ................................................................................ 9
2.3.2 求解共轭非圆锥齿轮节曲线 .............................................................................. 10
2.3.3 分插机构空间轨迹模型构建 .............................................................................. 11
2.3.4 分插机构参数分析及优化 .................................................................................. 13
2.4 本章小结 ......................................................................................................................... 19
第 3 章. 分插机构行星轮系的建模与仿真分析.............................................................. 20
3.1 不完全非圆锥齿轮的齿廓设计及三维造型 .................................................................. 20
3.2 分插机构不完全非圆锥齿轮行星系的建模 ................................................................. 21
3.3 不完全非圆锥齿轮行星轮系的仿真分析 ...................................................................... 22
第 4 章. 插秧机分插机构的三维建模及二维图纸设计 ................................................ 23
4.1 箱体的结构设计 ............................................................................................................. 24
4.2 栽植臂机构设计 ............................................................................................................. 25
4.3 各零部件的二维图纸生成 ............................................................................................. 26
4.4 分插机构零件设计的注意问题 ..................................................................................... 28
第 5 章. 论文总结 .................................................................................................................... 29
5.1 论文总结 ......................................................................................................................... 29
5.2 插秧机分插机构的发展前景 ......................................................................................... 29
参考文献 ................................................................................................................................... 30

致谢 .............................................................................................................................................. 32




第 1 章 .绪论


1.1 前言
浙江理工大学毕业论文


中国是一个农业大国,而水稻是我国主要的粮食作物。要实现农业现代化必

须要实现农业机械化。中国目前的农业机械化水平还不高,目前只有 48.8%,中

国的农业装备制造业只有持续稳定快速发展,产品国际竞争力与科技创新能力才

会逐步跨入世界先进行列。节能减排和低碳经济发展模式成为提升物质装备和改

变发展方式的优先战略。《“十二五”中国农业机械化发展形势分析》中提到农作

物耕种收综合机械化水平将要稳步提升 2—3 个百分点,到 2015 年达到 60%以上。

水稻栽植、收获机机械化,玉米收获机械化进入提速发展期。其中水稻种植的机
械化必须要大力发展,水稻合理的栽植能够有效地提高水稻产量[1-2]。

水稻机械化中最重要的是水稻插秧机,水稻插秧的机械化能够提高生产效率。

现如今大多数的农村青壮年劳动力都离开农村到城市务工,农村劳动力数量和水

平都持续下降,所以提高水稻插秧的机械化水平尤为重要,因此插秧机的发展是

目前发展的重点。而水稻插秧机中的分插机构决定了插秧机的性能。目前世界范

围内的分插机构均为均匀行插秧,由于均匀行插秧容易导致秧苗的通风效果差,

容易造成水稻的病虫害,还有由于均匀插秧造成的光照不充足的问题,都会大大

影响水稻的产量。

因此宽窄行插秧的种植方法在我国显得尤为重要,利用插秧行距不同来改善

通风减少病虫害,提高粮食产量。同时有助于减少农药的使用,对环境的保护会

起到很大的作用。


1.2 宽窄行分插机构的发展状况


浙江理工大学的赵匀教授领导课题组研究开发了一系列宽窄行分插机构。
1.步行式偏心-变位齿轮行星轮系宽窄行分插机构,如图 1.1[3]所示:

偏心-变位齿轮行星轮系后插式分插机构其主要结构是偏心变位齿轮传动结

构只对中间齿轮变位,太阳轮和行星轮为偏心圆齿轮。该偏心-变位齿轮行星轮

系由两个全等偏心圆齿轮、一个与其共轭的偏心变位齿轮和一个行星架构成。由


1


异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计


于偏心齿轮和共轭偏心变位齿轮啮合,引起传动比的非匀速变化,从而使得行星

轮相对行星架作非匀速转动。行星轮随着行星架绕回转中心作圆周运动,同时相

对行星架作非匀速转动,行星轮的绝对运动是这两种运动的复合运动。通过键、

行星轮轴与行星轮固结的一对栽植臂和行星轮作相同的复合运动。插秧机由传动
**箱 1、齿轮箱 15、16

全部文件包含以下内容




内容简介:
附件清单 编号编号 附附 件件 内内 容容 页页 数数 1 毕业设计任务书 3 2 文献综述 6 3 外文翻译 27 4 开题报告 10 5 指导记录卡 1 6 进程安排与考核表 1 7 指导教师评阅表 1 8 评阅教师评阅表 1 9 答辩小组评语表 1 10 成绩评定表 1 11 答辩记录表 1 附件二: 浙江理工大学本科毕业设计(论文)任务书 王珍珍 同学(专业 / 班级: 09 机制 4 班 ) 现下达毕业设计(论文)课题任务书,望能保质保量地认真按时完成。 课题名称课题名称 异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计 主要任务与主要任务与 目标目标 宽窄行插秧是由农艺专家提出的一种适合我国水稻种植要求的种植方式,该种植方式的目标是增加通风,减少病虫害,增加水稻产量。目前国内插秧机用分插机构都是等行距(30cm)形式,见报道的只有延吉插秧机制造有限公司和黑龙江农业机械研究所研制了一种宽窄行插机,采用等行距插秧用的曲柄摇杆式分插机构,只是在分插机构和秧箱的布置上做了一定的改进。实现了20cm-40cm 的插秧行距,但秧箱未能有效利用,尤其是采用 20cm 秧盘,与现有 30cm 秧盘不通用,机器不成熟,限制了机器的推广。国外插秧种植发达国家,如日本,由于地理气候的不同,不采用宽窄行插秧这种种植方式。 重点要解决的问题是,设计空间插秧轨迹行星是分插机构,实现机构轨迹参数的优化。 主要内容与基主要内容与基本要求本要求 本课题主要研究学习内容如下: 1、 掌握宽窄行插秧机的插秧要求。 2、 研究和设计利用异形非圆锥齿轮实现宽窄行插秧的行星轮系。 3、 设计程序,对机构参数进行优化。 4、 建立齿轮行星轮系三维模型并进行仿真分析。 5、 建立插秧机分插机构的三维模型。 6、 绘制插秧机分插机构的装配图及零件图。 基本要求如下: 1文献综述报告(不少于 3000 字)一篇 2开题报告一篇 3毕业论文一篇(不少于 10000 字) 4插秧机分插机构三维模型及二维装配图各一副 5. 插秧机零件图一套 要求分插机构能够实现宽窄行插秧要求。 主要参主要参 考资料考资料 及文献及文献 阅读任务阅读任务 查阅中文文献 15 篇以上,外文文献 5 篇以上,撰写 2000 字以上的文献综述。 主要参考资料: 1 俞高红,张玮炜,孙 良,赵 匀.偏心齿轮-非圆齿轮后插旋转式分插机构的三维参数化设计J.农业工程学报,2011,27(11):914. 2 孙 良,赵 匀,俞高红,姚佳明.基于 D-H 变换矩阵的宽窄行分插机构运动特性分析与设计J.农业工程学报. 3 孙 良,赵 匀,姚佳明,俞高红.非匀速空间行星轮系机构在宽窄行分插机构中的应用J.农业机械学报. 4 俞高红,刘炳华,赵 匀,孙 良,谢永良.椭圆齿轮行星轮系蔬菜钵苗自动移栽机构的运动机理分析J.农业机械学报,2011,42(4):5357. 5 孙 良,赵 匀,俞高红. 高速插秧机圆柱齿轮椭圆锥齿轮宽窄行分插机构,(发明专利申请号) 201110202061.2. 6 孙 良,赵 匀,俞高红,姚佳明. 高速宽窄行插秧机椭圆锥齿轮行星系分插机构,(发明专利申请号)201110202106.6. 7 Edathiparambil Vareed Thomas Development of a mechanism for transplanting rice seedlingsJMechanism and Machine Theory:2002,37(4) :395410. 8 L.S Guo,W.J. ZhangKinematic analysis of a rice transplanting mechanism with eccentric planetary gear trainsJMechanism and Machine Theory:2001,36(11):11751188 9 (日)小西达也,津贺幸之介,等田植机用千鸟植付机构的开发研究J农业机械学会志,1998,60(5):91-99 相关硕士论文,不详细列出。还要求学生自己搜索资料,培养相关能力。 外文外文 翻译任务翻译任务 要求阅读 3 篇以上外文文献,翻译 2 篇合计不少于一万印刷符号外文(每篇约5000 印刷符号) ,译成中文至少 2000 汉字。 1 L. S. Guo,W. J. Zhang, Kinematic Analysis of a Rice Transplanting Mechanism with Eccentric Planetary Gear Trains, Mechanism and Machine Theory, 36(2001) 2Edathiparambil Vareed Thomas, Development of a Mechanism for Transplanting Rice Seedlings, Mechanism and Machine Theory, 37(2002). 计划进度:计划进度: 起止时间 内容 2012.12.03 学生选题结束,明确毕业设计任务 2012.12.042013.03.01 完成开题报告、文献综述、英文翻译并上交 2013.03.022013.03.08 对开题报告、文献综述、英文翻译修改,开题报告答辩 2013.03.092013.03.20 利用编程对机构参数进行设计、优化 2013.03.212013.04.04 建立齿轮行星轮系的模型,并进行仿真分析 2013.04.052013.04.15 建立分插机构三维模型,绘制装配图及零件二维图 2013.04.212013.05.14 撰写毕业论文 2013.05.15 提交毕业论文初稿,指导老师评阅 2013.05.162013.05.24 根据导师意见,修改论文和图纸 2013.05.25 论文定稿上交,评阅老师评阅 2013.05.30 论文答辩 实习地点实习地点 15-216 指导教师指导教师 签签 名名 2012 年 11 月 25 日 系系 意意 见见 系主任签名: 年 月 日 学院学院 盖章盖章 主管院长签名: 年 月 日 浙江理工大学本科毕业设计(论文浙江理工大学本科毕业设计(论文)文献综述文献综述报告报告 班班 级级 09 机制 4 班 姓姓 名名 王珍珍 课题名称课题名称 异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计 目录:目录: 1 1 前言前言 2 2 国内外国内外研究研究现状和现状和发展趋势发展趋势 3 3 宽窄行分插机构宽窄行分插机构的的运动轨迹要求运动轨迹要求 4 4 宽窄行插秧机的宽窄行插秧机的研究研究意义意义 5 5 总结总结 6 6 参考文献参考文献 指导老师 审批意见 签名: 年 月 日 1 异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计 王珍珍 (09 机制四班 Q09300105) 1. 前言前言 农业的根本出路在于发展科技,其实质在于机械化,发展农业的首要问题是实现农业机械化问题。农业机械化是农业生产力的重要组成部分,农业机械化的发展水平是农业生产力水平的重要标志。我国加入世贸组织后,借鉴国际经验证明,科技水平低的农业是没有竞争力的农业,劳动生产率低的农业也是没有竞争力的农业。要提高我国农业在国际市场上的竞争力,首要的任务是扩大农业经营规模,用高新技术装备农业,所有这些,都离不了农业机械化。农业机械化承载着 8 亿农民的希望,支撑着农业现代化建设的物质技术基础。离开了农业机械化,农业的现代化就无从谈起。 中国是一个人口大国, 粮食是首先要解决的问题, 而水稻是中国的主要粮食作物。但是,到目前为止我国的水稻种植仍然以人工育秧,插秧为主,生产落后,劳动强度大。并且改革开放以来,我国西部农村地区的青壮年纷纷到东部沿海发达地区务工,使得西部农村的劳动力锐减,许多良田无人耕种,水稻种植面积减少,增加了全国粮食供应的难度。 随着中国人口的增加, 城市建设的快速发展, 国家工业现代化的建设。大量的工业园区,住宅区的建设使得耕地面积进一步减少,而粮食的需求将更大。水稻的产量和种植效率的提高已经成为急待我们解决的问题。 机械化种植可以提高水稻产量与质量,提高土地利用率与种植速度。 2. 国内外研究现状和发展趋势国内外研究现状和发展趋势 水稻插秧种植方式主要集中在亚洲,目前国外生产插秧机的国家也全部在亚洲,主要是日本和韩国。日本是世界上水稻插秧机械化水平最高的国家,也是插秧机械研究和制造水平最高的国家,插秧机技术和产品均处于领先地位,而且日本和韩国都已经实现水稻插秧机械化。 而我国国内现在的水稻机械化种植面积不到全国面积的 6%,所以水稻机械化种植的普及是解决水稻种植问题的关键。 随着国内插秧机市场需求的启动,未来发展前景广阔。我国很多企业都介入插秧机的开发和生产国外的插秧机企业也改变过去单一的产品出口方式, 纷纷在我国建立独资或合资企业进行插秧机生产,国内插秧机市场已经形成国际化的竞争局面。近年来国内插秧机市场发展迅速,2 产销量增长很快,2010 年我国插秧机保有量将突破 30 万台,较之“十五”末的 7.96万台,增长近 4 倍。插秧机的产销量大幅攀升,2010 年年度产销量较之 2005 年增长了 3 倍多。机械种植水平快速增长,由 2005 年的 7.14%增长到 2009 年的 16.71%,四年提高了 9.57 个百分点。2011 年我国插秧机市场将继续得益于国家政策的拉动,出现需求高潮。 近几年来我国的水稻机械化虽然得到快速发展, 但是也只有近 140 多万 hm2, 只占全国水稻种植面积的 5%。而发达国家,比如水稻机械化种植最发的国家日本,早在 1988 年就达到了 98%。韩国开始使用机械种植水稻的时间比较晚,但其速度非常快,到 1992 年就已经达到 95%。而导致我国水稻机械化程度低的原因主要有: 1. 国产插秧机可靠性低,而进口插秧机的价格太高。在我国农民的收入承受不起动则十几万,几十万的插秧机; 2. 我国地域辽阔,南北方水稻种植凡是存在很大的差异,很多国外的插秧机对我国北方的单季稻十分合适,但是对南方的双季稻却不适应,而我国主要的水稻产量在南方; 3. 水稻插秧机里面的机构设计需要很高的科技,它是一个很复杂的系统,要求企业有相当高的制造生产和研发的能力。 这就导致我国的插秧机被日本等国的插秧机所垄断,缺乏国产竞争企业。 因此无论性能上还是经济上都急需研究适合我国国情的水稻插秧机。 其中分插机构是插秧机中最为重要的工作部件,它的研究是最为必要,最有价值的。 插秧机分插机构的研究, 最早是20世纪50年代我国发明的曲柄滑道式分插机构,60 年代日本在改进我国插秧机构中发明了更为简单高效的曲柄摇杆式分插机构。后来日本又发明了毯状秧苗,使插秧的成功率和秧苗的成活率都大大提高。在 70 年代初期分叉机构上又增加了推秧装置,避免秧苗被秧针回带。在 70 年代后期,曲柄上增加了配重装置,使分插机构达到动平衡,即使在高转速下,它也能平稳的工作,这使得单位时间内插秧次数提高到 270 次/分。到了 80 年代,日本开始研制高速插秧机构, 单位时间的插秧次数是曲柄摇杆式的两倍。 高速插秧机构应用行星轮系分插机构,应用于乘坐式插秧机。 我国在 90 年代初期开始研制高速分插机构,取得了很大的成绩。特别是浙江理工大学的赵匀教授领导的课题组,经过多年的努力,攻克了许多难关,发明了多种旋转式机构,获得多项发明专利,有很多已经转让给厂家。这些发明包括偏心链轮分插3 机构,椭圆齿轮行星系分插机构等。 3 3. .宽窄行分插机构的宽窄行分插机构的运动轨迹要求运动轨迹要求 宽窄行分插机构的绝对运动轨迹是当插秧机有一个向前的速度时秧针相对地面的轨迹。分插机构的工作过程如下: (1)取秧过程:秧针从运行到碰触到秧苗开始到将秧苗从秧盘上取下的过程,这过程要求保证直取秧,秧针尽量减少伤害秧苗,这样缩短秧苗的返青时间,有利于秧苗的成长,使水稻产量增加。这要求秧针取苗的时候是垂直秧门下去,这样不会伤害到其他的秧苗。所以在取秧过程的轨迹应该和秧门垂直。取秧时秧爪与水平线的夹角( 取秧角) 应在 525; (2)送秧过程:是指取完秧后到开始推秧的这段过程,秧苗从秧盘被取下来在秧针上随着分插机构旋转,从垂直秧盘到旋转到一定角度,以便方便插秧。 (3)插秧过程:是将秧苗插入到地里的过程,这过程需要秧苗保持一定的直立度要使秧苗和地面的角度保持在 8090 度之间, 这需要轨迹在插秧阶段形成的穴口适合。轨迹的穴口长度为 2030 mm, 过大会导致所插秧苗倒伏或漂秧;增加秧苗的返青时间,不利于水稻增产。推秧时秧爪与水平线的夹角( 推秧角) 应在 60 80,即取秧角与推秧角的角度差约为 5060。 (4)空运行过程:由于插秧机往前运动,在空运行过程中要求插秧机不能将秧苗推到,这将有利于秧苗的成长,以减少返青时间。回程轨迹要有向上的趋势, 避免有太向前的趋势, 以免秧爪碰伤已插秧苗。 4 4. . 宽窄行插秧机研究意义宽窄行插秧机研究意义 目前国内外水稻种植最为普遍的是等行距和株距的插秧机。 根据我国的气候地理情况,如果采用宽窄行插秧机插秧将会增加秧行间的通风,光照,达到减少病虫害,增穗、增粒、提高粒重,充分发挥边际效应等优点。对于我国水稻产量和质量的提高起到很大的作用。而由于行距是由秧门决定,所以不可调,株距是由分插机构的转速和插秧车前行速度一起控制的。通过调节株距可以改变种植密度,但是插秧机在工作是只能按照调好的株距运行,在工作过程中其株距也是不能变的。作为水稻机械化最为发达的日本虽然也没有宽窄行的种植模式。 但是小西达等也利用锥齿轮和共轭凸轮4 机构得到实际所需的空间插秧轨迹。但这种机构十分复杂,需要改变移箱机构和秧箱结构,且不适合我国宽窄行插秧的需要。目前见报道的只有延吉插秧机制造有限公司和黑龙江农业机械研究所研制了一种宽窄行插机, 采用等行距插秧用的曲柄摇杆式分插机构,只是在分插机构和秧箱的布置上做了一定的改进。实现了 20cm-40cm 的插秧行距, 但目前市场上存在的秧箱未能有效利用, 尤其是采用 20cm 秧盘, 与现有 30cm秧盘不通用,机器不成熟,未能有效控制机器成本,限制了机器的推广。 5.5.总结总结 本课题在不改变其它机构的前提下,对分插机构进行改进,设计出一种不完全非圆锥齿轮传动宽窄行分插机构,实现机构秧针针尖插秧运动轨迹参数的优化,达到我国宽窄行插秧的需求。 5 参考文献参考文献 1 俞高红, 张玮炜, 孙良, 赵匀.偏心齿轮-非圆齿轮后插旋转式分插机构的三维参数化设计J.农业工程学报,2011,27(11):914 2 孙 良,赵 匀,俞高红,姚佳明.基于 D-H 变换矩阵的宽窄行分插机构运动特性分析与设计J.农业工程学报. 3 孙 良,赵 匀,姚佳明,俞高红.非匀速空间行星轮系机构在宽窄行分插机构中的应用J.农业机械学报. 4 俞高红,刘炳华,赵 匀,孙 良,谢永良.椭圆齿轮行星轮系蔬菜钵苗自动移栽机构的运动机理分析J.农业机械学报,2011,42(4):5357 5 俞高红, 赵匀等. 高速水稻插秧机分插机构研究现状和最新进展J.农机化研究. 2003, 2: 4143 6 李革,赵匀,俞高红.椭圆齿轮行星系分插机构的机理分析和计算机优化J.农业工程学报,2000,16(4) :7881 7 赵匀,孙良,赵雄,陈建能,李革.一种齿轮驱动倾斜式宽窄行插秧机分插机构P.中国: 201020155142.2, 2010-04-9 8 孙良, 赵匀, 俞高红, 武传宇.一种万向节驱动倾斜式宽窄行插秧机分插机构P.中国: 201020155132.9, 2010-04-9 9 俞高红,陈志威,赵匀,孙良,叶秉良. 椭圆不完全非圆齿轮行星系蔬菜钵苗取苗机构的研究P.机械工程学报, 2012,7,Vol.48,No.13. 10 赵匀,俞高红,李革,武传宇,杨文珍. 旋转式水稻分插机构的结构创新、参数优化和试验验证P.机械设计与研究,2002-8 增刊,198200 11 俞高红,孙良,赵匀. 混合齿轮行星系分插机构的人机交互参数优化J.农业机械学报,2008-2,第 39 卷 12 陈建能,赵匀.高速插秧机椭圆齿轮行星系分插机构的参数优化J.农业机械学报,9, 2003 :5(34) 13 EdathiparambilVareed ThomasDevelopment of a mechanism for transplanting rice seedlingsJMechanism and Machine Theory:2002,37(4) :395410 14 L.S Guo,W.J. ZhangKinematic analysis of a rice transplanting mechanism with eccentric planetary gear trainsJMechanism and Machine Theory:2001,36(11):11751188 15 日小西达也,水稻插秧机的新技术J.农业机械协会.1997,59(4),123127 外外 文文 翻翻 译译 毕业设计题目:毕业设计题目: 异形非圆锥齿轮行星轮系异形非圆锥齿轮行星轮系 水稻宽窄行分插机构设计水稻宽窄行分插机构设计 原文原文 1 1:Kinematic analysis of a rice transplanting mechanism with eccentric planetary gear trains 译文译文 1 1: 偏心齿轮行星轮系水稻插秧机的运动学分析偏心齿轮行星轮系水稻插秧机的运动学分析 原文原文 2 2:Bevel gear of the latest developments in measurement technology 译文译文 2 2: 锥齿轮测量技术的最新进展锥齿轮测量技术的最新进展 1 Kinematic analysis of a rice transplanting mechanism with eccentric planetary gear trains Abstract Although eccentric gear trains have been found useful in agricultural machinery such as rice transplanting machines, lack of a theoretic study on kinematics and dynamics of it has led to some difficulty to further improve the performances of the system. The main contribution of this paper is to develop the so-called kinematic parametric equation (kinematic model) for an eccentric planetary gear train without introducing the assumptions which are mainly related to the eccentricity of the system. A comparison of our kinematic model with the measured results achieved by Tatsuya Konishi et al. is also provided. Keywords: Eccentric planetary gear trains;Kinematics; Agricultural machine 1. Introduction Eccentric gears are similar to noncircular gears in the sense that kinematic behaviors of a pair of noncircular gears can be realized with a pair of eccentric gears. Their output behaviors, such as angular displacement and gear ratio, are a periodical function. The manufacturing of an eccentric gear is easier and the cost of manufacturing an eccentric gear is lower than that of manufacturing a noncircular gear. It is therefore worth to study the analysis and design method for eccentric gears with the objective to replace noncircular gears in some design practices. A few studies were presented on the analysis and design of a pair of eccentric gears. Mitome and Ishida 1 presented an analysis of kinematic behaviors and two typical design methods for a pair of eccentric gears. Hideo et al. 2 studied a simplified design method of pitch curves based on motion specifications for noncircular gears. Judd 3 optimized the timing mechanism using noncircular gearing. Takashi and Akira 4 studied a new steering mechanism using noncircular gears. Konishi et al. 5, Chen et al. 6, respectively, proposed kinematic analysis and parameter optimization of a rice transplanting mechanism containing eccentric planetary gear trains, but their analyses were all approximate in the sense that they assumed that the eccentricity of eccentric gears does not affect the meshing process of the teeth. There was no work reported on the kinematic and dynamic analysis of eccentric planetary gear trains. 2 The main contribution of the work to be reported in our paper is that we have developed the so- called parametric equation for the eccentric planetary gear train by using the result produced by Mitome and Ishida 1 on a pair of eccentric gears. The main difference of our work from others is that we consider the influence of eccentricity on the gear meshing process. A case will be studied to demonstrate the application of our equations in analysis of a rice transplanting mechanism. 2. Meshing transmission of a pair of eccentric gears 2.1. Displacement equations for eccentric gears The objective of displacement analysis for eccentric gears is to derive the relationship between two angular displacements of a pair of eccentric gears. Fig. 1 shows a pair of congruent eccentric gears with tooth number Z, module m, pressure angle in the initial position 0 and eccentricity . Gear 1 is a driving gear, and gear 2 a driven gear. The pitch curve equation of the driving gear in polar coordinate system can be written as: r1=(2 221) cos1 . (1) Fig. 1. Geometric characteristics of a pair of eccentric gears. Because 2R is the distance of centers of two gears, i.e., r1+ r2 = 2R, the pitch curve equation for the driven gear in polar coordinate system can be derived as: r2=2R (2 221) + cos1 . (2) Gear ratio is defined as: i21= 21 = 12 =222112221+1 . Let = e / R, the above equation can be rewritten as: i21 = 22(121)+1 1 (3) Angular displacement of the gear 2 can be obtained by integral of Eq. (3), i.e., 2= 21110= 2 1212sin1+cos110 1. (4) 3 Equations (3) and (4) show that the displacement of a pair of eccentric gears only depends on the eccentricity . 2 can only be solved by means of a numerical integral procedure, which is regarded difficult. In the following section, we will derive the so-called parametric equation for kinematic analysis without the need of numerical integral procedure. 2.2. Parametric equation of a pair of eccentric gears The parametric equation represents the relationships between input and output via a third parameter. When two teeth of mating gears have an involute form, the line of action is tangential to the two base circles. Since the base circles are also eccentric circles, the position of the tangent line will change its orientation during the gear meshing process. The moving coordinate system xoy is set up as shown in Fig. 2, in which the solid line shows an initial position of two gears, the dashed line shows relative position of the two gears after they rotate an angle. Because the two base circles are always tangential to the axis x, the position after a rotation can be considered such that the two base circles, respectively, make a pure rolling on the axis x through an angle. The following discussion is largely drawn from 1. In Fig. 2, O1, C1, O2, C2are, respectively, rotational and geometric centers of the two gears at the initial position; O1, C1, O2, C2 are, respectively, the corresponding position of the two gears after a rotation. 1and 2、can be represented as: 1= 1+ 0 , 2= 2+ 0, (5) where 1 and 2are rotational angles of the two gears relative to the line of the action, is the working pressure angle, and 0 is the initial pressure angle. Fig. 2. Motion of base circles of eccentric gears 4 3. Kinematic analysis for eccentric planetary gear trains 3.1. Basic equations Kinematic analysis for eccentric planetary gear train makes use the results obtained for eccentric fixed axis gear trains, combining the theory for planetary gear trains. We will first consider a standard scheme as shown in Fig. 5, and then consider a more complex situation. Fig.5. an eccentric planetary gear train with joint action gears: (a) initial position; (b) position after rotating an angular H. 3.2. Eccentric planetary gear trains Fig. 6. Angular displacement function of Fig.7. Gear ratio function of an eccentric an eccentric planetary gear train. planetary gear train Now, let us consider a more complex eccentric planetary gear train shown in Fig. 8. In Fig. 8, a mid-gear is presented. With the inversion approach, we obtain 1 where1= ,2 2= =+ +,=- -,3=+ + ,1 2 are the working pressure angles between gear 1 and gear 2, gear 2 and gear 3; 1 2 are the rotational 5 angles of gear 1 and gear 2 relative to their line of action;2 3 are, respectively, the rotational angles of gear 2 and gear 3 relative to their line of action. Hence, 2= 2+ 2 1. Fig. 8. An eccentric planetary gear train with a mid-gear. 4 A case study The case study is carried out on a rice transplanting mechanism with eccentric planetary gear trains. Konishi et al. and Chen et al., respectively, studied the kinematics and parameters optimization of a rice transplanting mechanism containing eccentric planetary gear trains, but their studies were all based on the assumption that the eccentricity of eccentric gears does not affect their meshing transmission. Our objective is to calculate the trajectory of the planting finger. From the scheme as shown in Fig. 9, the first step is to find H . By means of the method described in Section 3.2, the kinematic behaviors of an eccentric planetary gear shown in Fig. 8 can be solved. 3= 1 cos0+cos(0+1)cos0+cos(0+2)cos0cos(02)cos0cos(03)。 (25) Fig.9. A rice transplanting mechanism with eccentric planetary gear trains Figs. 10and 11 show angular displacement and gear ratio of an eccentric planetary 6 gear train when 0= . Fig. 10. Angular displacements of an Fig. 11. Gear ration function of an eccentric planetary gear train with a mid-gear. eccentric planetary gear train with a mid-gear The trajectory of the planting finger can then be derived point O3 in the right coordinate system xoy are: 3= s (+ 0), 3= cos(+ 0), (26) The equation of motion locus of planting finger can be written as: = 3+ cos ( 0 3), = 3+ s ( 0 3), (27) When L = 76 mm, H = 138 mm, 0 = 35 , = 69 , the motion loci of planting finger under various are shown in Fig. 12. Fig.12. Motion loci of planting finger Fig. 13. A measured motion locus of planting figure. Fig. 13 shows a measured motion locus of planting figure in a rice transplanting mechanism containing eccentric planetary gear trains, which was obtained by Konishi et al. Figs. 12 and 13 indicate that our computed results can be identical with the measured results only if the structural parameters, such as L,H,0, are reasonably determined, because the curves shapes shown in them are in excellent agreement. But if according to 7 the results of theoretic analysis in the paper of Konishi et al., that is, kinematics of eccentric gear trains is identical with elliptic gear trains, the motion loci of planting figure relative to machine should be symmetric shape. 5 conclusion It is impossible to get an analytical solution for the relationship between the angular displacements of a pair of eccentric gears; the numerical solutions were thus studied. In this paper, a further simplification of the solving procedure was presented. Furthermore, the proposed solving procedure was used to solve for the eccentric planetary gear train. To verify our proposed solving procedure, a rice transplanting mechanism with eccentric planetary gear trains was studied. As a result, the results obtained using our approach are in excellent agreement with those directly measured. 8 偏心齿轮行星轮系水稻插秧机的运动学分析偏心齿轮行星轮系水稻插秧机的运动学分析 摘要摘要 虽然偏心轮系在农业机械例如水稻插秧机中有很重要的作用, 但是对它的运动学和动力学的原理分析的缺乏导致进一步提高这个系统的功能存在困难。 本文的主要目的是研究偏心齿轮行星轮系的运动参数方程(运动学模型) ,没有介绍跟系统偏心率相关的主要假设。同时提供了我们的运动学模型和 Tatsuya Konishi等做的测量结果的对比。 关键词关键词:偏心齿轮行星轮系;运动学;农机 1. 前言前言 一对非圆齿轮的运转状态也可以理解成一对偏心齿轮的运转状态, 在这个意义上, 偏心齿轮跟非圆齿轮是相似的。 它们输出的转动特性, 如角位移和传动比,是周期函数。加工一个偏心齿轮比加工一个非圆齿轮要简单,并且成本低。因此以在一些设计实践中替代非圆齿轮为目的对偏心齿轮的分析和设计方法进行研究是有价值的。 关于一对偏心齿轮的分析和设计提出了一些课题。 Mitome 和 Ishida1提出了对一对偏心齿轮的运动特性的一种分析方法和两种典型的设计方法。Hideo 等人研究了基于非圆齿轮节曲线运动规律的简化设计方法。Judd 采用非圆齿轮传动装置优化了定时机构。Takashi 和 Akira 研究了一种新的使用非圆齿轮的转向装置。 Konishi 等人和 Chen 等人分别提出了一种包含偏心齿轮行星轮系的水稻插秧机的运动学分析和参数优化,但是他们的分析都是粗略的,在他们假设偏心齿轮的偏心率不影响轮齿的啮合过程的意义上。 没有为记录偏心齿轮行星轮系的运动学和动力学分析结果所做的工作。 本文中所报告的工作的主要贡献在于我们利用 Mitome 和 Ishida1对于一对偏心齿轮的研究结果对偏心齿轮行星轮系所谓的参数方程进行了优化。 我们的工作与别人的主要的区别是我们考虑到我们优化的方程在水稻插秧机的分析中的应用。 2.2.一对偏心齿轮的啮合传动一对偏心齿轮的啮合传动 9 2.1 偏心齿轮的位移方程 对偏心齿轮的位移分析的目的是为了得到一对偏心齿轮的两个角位移之间的关系。图 1 中是一对齿数为 Z,模数为 m,初始位置压力角为 0 ,偏心率为 的相同的偏心齿轮。齿轮 1 是主动齿轮,齿轮 2 是从动齿轮。主动齿轮的节曲线方程在极坐标系下可以写成: r1=(2 221) cos1 . (1) 图图 1. 1. 偏心齿轮的几何特性偏心齿轮的几何特性 因为 2R 是两个齿轮的中心距,即 r1+r2=2R,从动齿轮的节曲线方程在极坐标系下可以推导为: r2=2R (2 221) + cos1 . (2) 根据齿轮传动比的定义: i21= 21 = 12 =222112221+1 . 让 = e / R, 上式可以写成: i21 = 22(121)+1 1 (3) 齿轮 2 的角位移可以对方程(3)积分得到,即: 2= 21110= 2 1212sin1+cos110 1. (4) 方程(3)和(4)表明一对偏心齿轮的角位移仅与偏心率 有关。2 只可以通过一些困难的数值积分法来求解。 接下来我们将不使用数值积分法对运动学分析所谓的参数方程进行推导。 2.2 一对偏心齿轮的参数方程 10 参数方程通过第三个参数表示输入量和输出量之间的关系。 当啮合齿轮的两个齿是渐开线的形状,作用线与两个基圆相切。由于两个基圆也是偏心圆,在齿轮的啮合过程中,切线的位置会改变方向。动坐标系的建立如图 2 所示,其中实线表示两个齿轮的初始位置,虚线表示转动一个角度后两个齿轮的相对位置。因为这两个基圆始终与 x 轴相切, 转过一定角度后的位置可以看做是两个基圆分别在 x 轴上纯滚动过一个角度后的位置。 接下来的讨论主要引自1。在图 2 中,O1, C1, O2, C2分别是两个齿轮在初始位置的转动中心和几何中心; O1, C1, O2, C2分别是两齿轮转过一定角度后的对应位置。1、2可以表示为: 1= 1+ 0 , 2= 2+ 0, (5) 其中,1、2是两个齿轮相对于作用线转动的角度,是工作压力角,0是初始压力角。 图图 2. 2. 偏心齿轮偏心齿轮基圆的运动基圆的运动 3.3.偏心齿轮行星轮系的运动学分析偏心齿轮行星轮系的运动学分析 3.1 基本方程 对偏心齿轮行星轮系的运动学分析利用从偏心固定轴齿轮系得到的结果,结合行星轮系的原理。我们首先考虑一个如图 5 所示的标准方案,然后再考虑更复杂的情况。 11 (a)初始位置;初始位置;(b) 转过角度转过角度 H H后的位置后的位置 图图 5. 5. 有同轴齿轮的偏心齿轮行星轮系有同轴齿轮的偏心齿轮行星轮系 3.2 偏心齿轮行星轮系 图图 6. 角位移函数角位移函数 图图 7. 传动比函数传动比函数 现在,我们来考虑一种如图 8 所示的复杂的偏心齿轮行星轮系。在图 8 中,加入了一个中间齿轮。根据反演方法,我们得到: (24) 其中,1= ,2 2= =+ +,=- -,3=+ + ,1,2分别是齿轮 1和 2 之间,齿轮 2 和 3 之间的工作压力角;1,2分别是齿轮 1 和齿轮 2 相对与它们的作用线转过的角度; 2,3分别是齿轮 2 和齿轮 3 相对与它们的作用线转过的角度。因此, 2= 2+ 2 1. 12 图图 8. 8. 有一个中间齿轮的偏心齿轮行星轮系有一个中间齿轮的偏心齿轮行星轮系 4. 4. 案例研究案例研究 案例研究的是偏心齿轮行星轮系水稻分插机构。 Konishi 等人和 Chen 等人分别研究了一种包含偏心齿轮行星轮系的水稻插秧机的运动学分析和参数优化, 但是他们的分析都是在偏心齿轮的偏心率不影响轮齿的啮合过程的假设的基础上。 我们的目的是计算种植曲线的轨迹。从图 9 的方案中第一步是找到H。用3.2 部分介绍的方法可以求出图 8 中所示的偏心行星齿轮的运动特性。 3= 1 cos0+cos(0+1)cos0+cos(0+2)cos0cos(02)cos0cos(03)。 图图 9. 9. 偏心齿轮行星轮系分插机构偏心齿轮行星轮系分插机构 图10 和11分别表示的是当0= 时一对偏心行星齿轮的角位移和传动比。 种植曲线的轨迹可如下推导。 点O O3 3在直角坐标系xoy下的坐标是: 3= cos(+ 0), 3= s (+ 0), (26) 13 图图 10. 10. 偏心行星齿轮的角位移偏心行星齿轮的角位移 图图 11. 11. 偏心行星齿轮的传动比偏心行星齿轮的传动比 种植曲线的运动轨迹方程可以写成: = 3+ cos ( 0 3), = 3+ s ( 0 3), (27) 图 12 中表示了当L=76mm,H =138mm,0=35,=69时,种植曲线随 变化的运动轨迹。 图 13 表示了由 Konishi 等人实际测量得到的偏心齿轮行星轮系分插机构的种植曲线的运动轨迹。 图图 12. 12. 种植曲线的运动轨迹种植曲线的运动轨迹 图图 13.13.测量的种植曲线运动轨迹测量的种植曲线运动轨迹 图 12 和 13 表明只要结构参数,如L,H,0,合理地确定,我们的计算结果可以跟实测结果很好的吻合,因为曲线的形状很好的重合。但是如果根据Konishi 等人论文中的原理分析的结果,即,偏心齿轮传动的运动轨迹与椭圆齿轮传动的运动轨迹相同,机器的种植曲线的运动轨迹是对称的。 5. 5. 结论结论 一对偏心齿轮的角位移之间的关系的解析解是不可能得到的, 因此对数值解进行了研究。在本文中,提供了一种简化的求解过程。此外,还运用了提出的解决方法来求解偏心齿轮行星轮系。为了验证我们提出的解决方法, 对偏心齿轮行14 星轮系插秧机构进行了研究。因此,使用我们的方法所获得的结果跟那些实际测量结果很吻合。 15 Bevel gear of the latest developments in measurement technology 1 Overview Bevel gear drive mechanism in the car, helicopter, machine tools and electric tools manufacturing industry, has been widely used. The use of different performance of the bevel gears are also different quality requirements, can be summarized including: a good contact area, can be a reliable torque transmission power; good match geometry, a smooth transfer of the movement, in order to ensure uniform load , transmission smooth, vibration small, noise low. Factories are usually small devices and dual-spot detection of rolling contact tester to control the quality of bevel gear, but in reality it is very difficult to determine accurately the performance of the bevel gear. Bevel gear and the precision of measurement of cylindrical gears similar, can generally be classified into three types: Coordinate Geometry Analysis of measurement type. That is, the bevel gear as a geometric entity, its geometric elements, respectively, the geometric precision of individual measurements; Gear Measuring Center is the main measuring instruments. Comprehensive engagement measurement accuracy. That is, the bevel gear transmission as a component, the accuracy of their transmission, contact spots, a comprehensive measurement of the vibration noise. The measuring instruments are mainly one-sided meshing bevel gear tester, bevel gear meshing two-sided bevel gear measuring and inspection machine rolling. Bevel Gear the overall measurement error. It will bevel gear transmission as a function for the realization of the geometric entities, or by coordinate measuring method in accordance with the geometric precision of a single measurement to measure the overall error of bevel gears, bevel gears to achieve a single transmission error and the geometric precision of the intrinsic link between the quality of the analysis; or by mating single measurement, the use of mesh point scan measurement of bevel gears for the overall error of measurement, has been integrated bevel gear movement accuracy, contact spots, as well as the geometric 16 precision of the individual. Therefore, the overall error of measurement of bevel gear is a measurement of the first two methods of integration and development. With the coordinate measuring technology, computer control and measurement technology, in recent years, the overall error of measurement of bevel gear technology research development soon. Gear Measuring Center as a result of multi-cylinder coordinates, such as multi-function measurement instrument performance, data-processing capacity, bevel gear-type coordinates of analytic geometry measurement technology, has been the development of a single geometric error of measurement to the overall error of measurement of bevel gear, improved cone gear design, processing, quality testing to determine the accuracy and the use of the forecast performance of the bevel gear, such as the level of manufacturing technology. By Chinas own development, based on the control point movement - geometric measurement principle on one side of the bevel gear meshing point scanning technology and technology development based on the overall error of the bevel gear measuring instrument, it is more towards the production of the first line, so that China Bevel Gear measurement theory, the practical application of measurement technology has been further improved and developed. 2. The main bevel gear precision measurement method and apparatus 2.1 Coordinate-style geometric measurement and analysis equipment Machinery Exhibition into a straight bevel gear-type coordinate measuring instrument there earlier products to represented KP42-type, but the complex structure of high accuracy. Since 1990, both before and after, CNC Gear Measuring Center to the market, coordinates arc bevel gear-type geometry of measurement error is the rapid development and popularization and application. Todays market, Gear Measuring Center from abroad, whether it is Klingberg Germanys P63, or the United States Gleason / mar the GMX275, M & Ms Sigma 3, have been measured with the function of bevel gear. These instruments have reached VDI / VDE level provided a space measuring uncertainty for more than 2 microns; bevel gear on the geometric error of a single test, such as pitch deviation (including single pitch deviation, the cumulative pitch deviation , total cumulative pitch deviation), tooth profile deviations 17 (including a total deviation of tooth profile, the shape of tooth profile error, tooth profile tilt deviation) and teeth to the error (including the teeth to the total deviation, deviation of the shape of teeth to the teeth to tilt deviation) and output deviation of three-dimensional shape of tooth surface morphology map. 2.2Integrated single-sided mesh rolling test measurement method and apparatus Single-sided bevel gear meshing scroll detection methods have been used in production for many years. N0.513 Gleason in the United States rolling test machine as an example, in the measured single-sided bevel gear pair meshing, the simulation of its work, and to a certain degree of speed and load, adjust the V / H, for colored contact area (spot ) testing to determine the bevel gear pair under test contact conditions; through the use of acceleration sensors, pickup of vibration and noise measured on the tooth scan frequency harmonic detection. This method is quasi-dynamic measurement method, which bevel gear for the accuracy of detection is far from complete or accurate enough. Optical encoder used as the base point of view, to cut bevel gears for the accuracy of detection of the integrated single-sided meshing bevel gear tester, such as Germanys Klingberg PSKE900, because a single test items, in particular, it is difficult for the basis of test results Bevel Gear Machine parameters adjusted to give guidance, to improve processing quality bevel gears. Less cost-effective and therefore not much used in production. Gleason has introduced in recent years, the Phoenix 500HCT CNC bevel gear inspection machine is rolling with a rolling test at the same time and one-sided mating tester measurement function, measurement of both the tangential bevel gear integrated error, while the number of measuring cone gear contact area, three-dimensional structure of the noise analysis. The advanced models, such products represent the contemporary level of development, although expensive, but there are individual users at home. Klingberg also similar GKC60, such as Orion Hole T50 CNC bevel gear inspection machine. 2.3Measurement error overall and equipment The overall error of measurement of bevel gear is rotating in the same angle displacement coordinates of the order will be based on the meshing bevel gear tooth 18 surface of the work of the detection point measured by the geometric error of all the individual integrated into a bevel gear overall error map, and on this basis, bevel gears for the completion of a single geometric precision, and accuracy of an integrated campaign bevel gear analysis of contact state deputy measurement, the use of bevel gears to achieve the performance and quality assessment and monitoring. Bevel gear and the overall error of measurement apparatus, the current can be divided into three second-class. A class of analytic geometry for coordinate measurement type, the method is divided into point-to-point measurement and point of scan measurements, equipment used in two ways for CNC Gear Measuring Center, but the allocation package by the measurement different; the other for the mating-type movement measurement geometry (ie, mesh-type scan measurement point, the method for our first), the apparatus used for single-sided meshing bevel gear tester, equipped with a dedicated measurement bevel gear and measurement software package. (1) coordinate the overall bevel gear-type point-to-point measurement error Gear Measurement Center in, along with three-dimensional measurement of bevel gear tooth profile and tooth to the two directions, according to a pre-determined interval, the detection of the measured points of the tooth surface (usually the 5 tooth profile, tooth up 9 a total of 45 points) for the geometry error of measurement of 1.1 points. This method can be avoided and the measured three-dimensional probe in the measurement of tooth surface when the impact of friction and the measurement results. The measurement method is based on direct measurement principle, concrete steps are: first bevel gear in accordance with the adjustment of machine parameters and tool geometry parameters to be processed by calculating the large and small bevel gear tooth surface ideal geometric processing parameters; the tooth tooth surface as a reference, respectively, and the actual process (or after heat treatment) of large and small gear tooth surface compared to the actual measured tooth surface of the tooth surface with an ideal geometric deviation. MATCH procedures through the use of dedicated, determined corresponding to the actual measured tooth surface machining parameters of the illusion; re-engagement model in accordance with TCA analysis, 19 calculated by the bevel gear pair integrated deviation and tangential contact conditions, test whether or not to meet the requirements. If necessary, the corresponding software will be based on the measurement results, re-calculate and adjust the machining parameters in order to re-try all they can be processed into a more satisfied with the quality of products. (2) Coordinates of point scanning type bevel gear of the overall measurement error Seiki, Osaka, Japan recently proposed using two-dimensional measurement of bevel gear tooth surface measurement to point scanning method has been satisfactory and reliable results. This method has the following characteristics: the workpiece by controlling the rotation, the parallel displacement of probe movement, to avoid the probe and the tooth surface friction between the adverse effects of measurement; measurement as a result of the use of scanning, surveying the region to cover the entire tooth surface, including Top Gear, as well as close to large and small end of the region; measurement path can have a wide range of choices, usually tooth number and tooth number of each to the three, a total of six; each sample the number of scanning lines of up to 113 points, as sampling density, to reflect minor tooth surface waviness (which often is not pleasant ripple of the main sources of noise, the conventional point-to-point measurement method difficult to measure). The method used the conjugation of principle, the concrete steps are: First of all, the basis of machining parameters and tool parameters to be the ideal gear tooth surface geometry processing parameters, to calculate the conjugate with it, no transmission error of the virtual conjugate of the pinion tooth surface geometry parameters; the actual processing of the large gear tooth surface with the ideal gear tooth surface processing compare measurements to detect gear tooth profile and the relative deviation upward; the actual processing of the pinion tooth surface and calculation of be conjugate Virtual pinion tooth surface compared with measurements, to detect the gear tooth profile and the relative deviation upward. According to the relative deviation of measured, calculated by the deputy of the three-dimensional bevel gear tooth surface morphology of the comprehensive plan deviation, deviation and tangential contact with the integrated 20 form of (including access to the path of contact area shape, size, location, etc.). By physical measurement, than on the authentication, point-to-point and point measurements of the measurement scan measurement results are consistent. (3) mating-type bevel gear to scan the whole point of the measurement error Chengdu Tool Research Institute of the bevel gear to mesh-type scan measurement point is one-sided meshing bevel gear tester, the design of the installation location by using a special measuring bevel gear and bevel gear test for measuring the rolling one-sided engagement. This measurement of bevel gear pair basis cone measured geometric parameters and the geometric parameters of gear pair are all the same. Measurement methods or the use of corrosion-paste method, in large and small measurement of the gear teeth and white make the necessary gear tooth profile or ridge to the measurement, by measuring the bevel gear or the gear tooth profile and match to the measurement of ridge bevel gear of the measured tooth contact transmission, the meshing of bevel gears to complete scanning the overall error of measurement points. Measurement path and measuring the number of gear teeth, and a total of 3 +3 is generally 6. Mating-type bevel gear to scan the overall error of measurement points used the relative measurement of the local benchmark principle. Measurement of specific steps are as follows: In accordance with the actual bevel gear pair sports / test experiment (or experience), elected by the factory can best meet the needs of the bevel gear use requirements vice as a benchmark bevel gear pair (known as the local benchmark), its integrated bias-cut to a cut tooth to the integrated form of bias and the contact area was identified as the assessment of the accuracy of the bevel gear of the main reference Vice indicators. Measurement of Bevel Gear and the local base of meshing bevel gears, bevel gears in mesh single tester measured tooth profile deviation of a consolidated Board - measured (local base bevel gear Deputy - Vice-bevel gear benchmarks, the same below), integrated to the deviation of tooth Board - measuring, cutting to the integrated deviation of the Board - measuring a tooth integrated deviation Board - measuring, shape Council contact area - measured, as well as the integrated deviation of three-dimensional tooth surface morphology of Fig Bureau - measuring and so on, and was recognized as a bulk 21 evaluation of bevel gear testing The accuracy of a single bevel gear indicators mainly refer to baseline data. Measured part bevel gear and bevel gear measuring method according to the same measurement, the deviation of the workpiece has been Bevel Gear - Bevel Gear measurement data; by the computation of the corresponding deviations workers - Bureau data (that is, relative to the workpiece bevel gear partial cone base Gear indicator of the corresponding deviations of the accuracy). And then measured in accordance with the Public Works - Bureau deviation of the accuracy of data and indicators for the development of tolerance, to determine the bevel gear of the level of quality and interchangeability. Bevel gear overall error measurement method is simple, fast and reliable measurement information-rich, especially for mass production. As a result of measurement must be measured using special gear, so this method should not be used for a single measurement of small quantities. However, since the bevel gear at the same time the overall error of measurement also has a rolling bevel gear tester, so it can be used for single-piece and small-batch precision bevel gear Deputy comprehensive detection and production of the test workpiece and cutting tool debugging. 3 Conclusion Through the bevel gears in recent years the field of measuring the status of technology research and development, both at home and abroad to highlight the overall error of measurement of bevel gear technology, methods and development of the corresponding equipment. Chinas self-developed scanning mating-type bevel gear at the overall error of measurement technology, has been gradually recognized by domestic and foreign counterparts; technology development based on the overall error of the bevel gear measuring instrument is to the production line and continue to improve measurement practice . It is believed that the mesh-style points based on scanning the overall error of measurement of bevel gear technology, the establishment of precision bevel gear bulk products database, it is very possible to adopt in accordance with the use of computer-assisted measurement technique to achieve automatic arc bevel gear pair quickly. 22 锥齿轮测量技术的最新进展锥齿轮测量技术的最新进展 1 概述概述 锥齿轮传动机构在汽车、直升飞机、机床及电动工具制造业中,得到了广泛的应用。不同的用途对锥齿轮性能质量的要求也不同,归纳起来包括:有良好的接触区,能可靠的传递动力扭矩;有良好匹配的几何形状,能平稳的传递运动,从而保证载荷均匀、传动平稳、振动小、噪音低。工厂
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:异形非圆锥齿轮行星轮系水稻宽窄行分插机构设计【含全套CAD图纸】【答辩毕业资料】
链接地址:https://www.renrendoc.com/p-346961.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!