资源目录
压缩包内文档预览:
编号:34777915
类型:共享资源
大小:4.75MB
格式:ZIP
上传时间:2019-12-27
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
40
积分
- 关 键 词:
-
车灯
灯罩
注塑
模具设计
制造
- 资源描述:
-
车灯灯罩注塑模具设计与制造,车灯,灯罩,注塑,模具设计,制造
- 内容简介:
-
黄河科技学院本科毕业设计(论文)任务书 工 学院 机械 系 材料成型及控制工程 专业 08 级 材料 班学号 080118008 学生 李阳 指导教师 王宗才 毕业设计(论文)题目 车灯灯罩注塑模具设计与制造 毕业设计(论文)工作内容与基本要求(目标、任务、途径、方法,应掌握的原始资料(数据)、参考资料(文献)以及设计技术要求、注意事项等)(纸张不够可加页) 1. 设计目的:(1)综合运用塑料成型材料的基本知识,以塑料成型的基本原理和工艺特点,分析成型工艺对模具的要求;(2)掌握成型设备对模具的要求;(3)掌握成型模具的设计方法,通过毕业设计,使学生具备设计中等复杂程度的模具的能力;(4)培养学生正确的设计思想和分析问题、解决问题的能力,学会运用标准、规范、手册、图表和查阅有关技术资料,培养学生从事模具设计的基本技能。 2. 设计任务:车灯灯罩注塑模具设计与制造 3. 设计规格: (1)外形尺寸见附图;(2)材料:ABS;(3)生产纲领:大批量 4. 设计内容: 1)塑件的工艺分析以及注射机选择 2)注塑模具的设计,主要包括: (1)型腔数目确定 (2)分型面选择 (3)型腔的布置 (4)浇注系统的设计 (5)排气槽位置的选择 (6)成型零件的设计与加工工艺 (7)脱模机构零件的计算 (8)模具标准零件的选择 (9)冷却系统的设计 (10)塑料模具的材料及热处理 3) 实体设计 (1)所给制品的实体设计 (2)凹凸模实体设计 (3)模具其他零件的实体设计 (4)模具虚拟装配 5. 设计要求: (1)2012年2月10日完成开题报告,文献综述以及文献翻译。 开题报告主要内容包括:调研资料的准备,毕业设计的目的、要求、思路与预期成果;任务完成的阶段内容及时间安排;完成设计所具备的条件因素。 文献综述不少于3000字;文献翻译不少于3000字。查阅文献资料不少于12篇,其中外文资料不少于2篇; (2)2012年3月1日前完成毕业设计方案。 (3)2012年4月10日完成图纸绘制,实体设计和毕业设计说明书初稿。 (4)2012年4月20日完成毕业设计说明书定稿。设计说明书不少于8000字,条理要清晰,格式规范,逻辑性强。 (5)2012年5月1日前上交所有材料(纸质材料和电子档),学院进行答辩资格审查 。2012年5月14日前完成答辩前的修改工作,做好毕业答辩准备。 (6)2012年5月19日-20日院里组织统一毕业答辩。 6. 参考文献: 1 党根茂 骆志斌 李集仁 主编.模具设计与制造.西安:西安电子科技大学出版社,1995.12; 2 许发樾 主编.实用模具设计与制造手册.北京:机械工业出版社,2002.1; 3 塑料模设计手册编写组著.塑料模具设计手册.北京:机械工业出版社; 4 王焕庭 李茅华 徐善国 主编. 机械工程材料.大连理工大学出版社,2000.5; 5 高佩副 主编. 实用模具制造手册. 北京:中国轻工业出版社,1999.3 6 彭建声 秦晓刚 主编. 模具技术问答.北京:机械工业出版社,2000.1 7 陈锡栋,周小玉.实用模具技术手册.机械工业出版社,2001.7 8 付宏生.刘京华.注塑制品与注塑模具设计.化学工业出版社,2003.7; 9 陈万林.实用塑料注射模设计与制造.机械工业出版社2000.10; 10 贾润礼,程志远.实用注塑模具设计手册.中国轻工业出版社,2000.4; 毕业设计(论文)时间: 2012 年 2 月 13 日至 2012 年 5 月 13 日计 划 答 辩 时 间: 2012 年 5 月 19日-20日 专业(教研室)审批意见:审批人(签字):附图:黄河科技学院毕业设计(文献翻译) 第 7 页 毕业设计文献翻译 院(系)名称工学院机械系 专业名称材料成型及控制工程 学生姓名李阳 指导教师王宗才2012年 03 月 10 日复杂微几何注塑模具的开发摘要本文将跟踪开发制造微流控芯片注塑模具的设计和结果,集成毛细管流体互连的存在,使模具设计和注塑成型工艺复杂化。我们确定,负责把熔融塑料送到型腔流道和浇口系统的设计对生产的零件的型腔和工艺窗口的尺寸产生很大的影响。数值结果证实了我们的调查结果,减少栅极长度和增加部分的厚度,大大提高了填充截面,并降低了37的注射压力。最后,对浇口位置部分收缩的影响进行了分析和讨论。1.简介注塑成型是微流体器件的大规模生产最便宜的制造技术,微流体器件的大规模生产(Becker和 Gartner 2008; Fiorini 和 Chiu 2005; Heckele 和 Schomburg 2004)。这一直都是许多出版物报道使用注塑成型技术制造多种微型器件背后最主要的原因,包括微流体装置(Attia et al. 2009; Chen et al. 2010; Kim et al. 2006; Lee et al. 2005; Su et al. 2004; Tosello et al. 2010)。然而,这些文件一般侧重于设备的设计与有限或没有讨论模具的设计。这种情况的一个原因是,模具疏忽是一个重大的成本,因此进行实验相关模具设计是昂贵的。此外,大多数商业注塑机的模具设计的丰富经验的或昂贵的模拟软件,这两者都是超出了大多数学术研究。虽然有传统的注塑设计的可用资源(Rosato et al. 2000),大多数研究人员在设计注射模时往往是第一时间追求昂贵耗时的试验和错误的方法。本文将探讨我们修订的两套注塑工具。结果部分已是过去几年里发表的几个出版物的主要部分(Chen et al. 2008; Geiger et al. 2010; Mair et al. 2007; Mair et al 2006; Mair et al. 2009; Stachowiak et al. 2007)。模具的设计很复杂,包含集成毛细管流体互连。而彻底的注塑模具设计指南是超出了本文的范围,我们的目的是提供一些有识之士的微社会为他们设计他们自己的模具。2.注塑模具第一种模式的目的是要解决传统的模具局限性,如图1所示,图1.关键的注塑模具术语强调传统与模型。注意在中心部分的浇口,导致部分的长度沿厚度的急剧性变化存在于工作被提出之前。由于完全填补模具浇口位置需要的高压力,零部件生产,中间比两端厚。任何压力的减少,相对于平坦部分将导致模具的不完全填充。因此,对初步设计的主要目标是使长度和宽度方向厚度均匀。为此,设计流道和浇口在多个地点提供聚合物熔。栅极长度受到限制的几何形状的微型模具插入,这简直是夹在双方注塑模具之间。随着这一设计,其他功能被添加到模具。最值得注意的是,毛细管流体互连被集成到部分设计之中。这使我们能够减少设备工作所需的后处理(Mair et al. 2006)。此外,模具设计成一个“样版”的模具,使芯片的两半在同一时间成型,即使他们有很大不同的形状和体积。模具的主要特征详见图2。图2.原来的模具设计,沿横截面,显示模具的两半。内浇道被延长沿腔两侧,每侧有五个浇口,努力提高厚度均匀。该微型模具插入是夹紧在两半模具之间,规定长度的浇道。两腔同时成型,尽管在体积,由于集成端口的存在差异。注意,在实际的模具,门腔相同的深度虽然有可能成功地塑造这个最初的设计中使用的微流体装置,模具遭受来自特定的弱点。首先,部分所载靠近浇口的内部残余应力水平高。这些压力是导致热粘合过程中的重要组成部分,在加热后的浇口收缩。基本上,键合过程允许高度强调聚合物放松、变形的零件。其次,虽然部分平坦,更一致,但部分出奇的从浇道位置进一步厚。第三,我们观察到在集成端口,其中比截面芯片厚收缩。这收缩本身,有时作为一个空白,在其他时间作为一个接收器的标记。最后,有没有保留的微模仁机制。因此,微型模具插入往往会被删除,从模具的一部分,必须手动删除。在大约一千个周期的过程中,模具开始穿使得它难以正确填写不闪动的模具。我们决定在这个时候修改的模具,以提高其性能。然而,为了获得额外的洞察力,模具设计过程中,用模流软件(最近,由Autodesk, Waltham, Massachusetts收购)来模拟注塑成型过程。为此,事后分析,进行初步设计,并与实验结果非常密切的结果一致。最值得注意的是,最值得注意的是,它被发现,稀松浇口设计所观察到的问题的根源。具体来说,浇道太长,决定了由几何形状设计的夹紧技术插入的用来支承的微型模具。因此,跨浇口压降过高,导致一个“犹豫”的效果在第一浇口。换句话说,塑料流经浇道,来到第一浇口就继续往下的一部分,而不是填补浇道。这导致了一个明显的皮肤形成了浇道,由于“喷泉流”流动的熔融塑料(Tadmor 1974),实际上这部分从后回了到前。这些结果表明的数值和实验研究如图3。图3.比较实验结果与数值分析(上)(下)。先后通过增加球的大小,它是明确的部分趋向于填补从“回”到“前”。这一结果证实了数值较高的压力需要填补了前面的部分。这个协议给了我们一个高的信心值对于提供的软件模流分析也证实了在集成端口的观察收缩。在一个典型的注塑设置,收缩的部分缓解,继续通过内部的一部分,以填补从外面的塑料冷却的一部分。这个过程为“包装”部分。然而,在这种情况下,为塑料填写的端口,它必须首先流经芯片的厚度。由于该芯片具有更薄的截面比的端口,它是难以妥善包装,继续冷却和收缩后的芯片本身冻。灌装/包装过程通过不同的腔进一步复杂,腔作为填充远低于无特色腔。3.修订的注塑模具原设计的结果和事后分析的基础上,很明显,该浇注系统限制了原始模具设计的性能。因为微型模具插入夹紧技术是第一浇口设计的驱动因素,我们专注于努力重新设计的模具插入夹紧机制和浇注系统。由此产生的设计如图4所示。本设计采用机械夹具插入到位,这也有助于形成模具型腔和浇口支承。浇口自己被缩短2.5至0.5毫米,以尽量减少任何的回流,作为塑料流下了流道。最后,端口一侧的腔厚度增加了一倍,从0.5到1毫米,大大提高了流动和平衡两腔之间的流动。如图4所示,新浇口计和厚腔必要的成型压力减少37,大大开拓我们的加工窗口。虽然,它是不可能在厚截面注入,我们希望,要求较低的压力和较厚腔将使我们能够减轻较厚端口部分观察到的任何收缩。图4.修订后的流道和浇口(顶部)和夹紧机构(底部)的数值模型。缩短浇口减少所需的注射压力从135到85兆帕。此外,夹(深灰色)允许插入被牢固地与其他插入具有不同的微通道设计的交换经修订的设计,注塑成型过程有显着较大的工艺窗口,取得了更高质量的零件,并改善重复性重复性最终提高产量和减少浪费。不幸的是,半自动操作的模具,收缩缺陷在端口的形式的空隙和交错偶尔会因不同的周期时间继续发生,新的夹持系统优于以往的设计,大大降低了我们的周期时间,并延长微加工模具的寿命。4.结论详见本文,模具开发是一项昂贵和费时费力的工作,特别是对于那些经验不多的复杂模具设计和聚合物加工。这项工作的主要结论是:1. 必须有一个适当的流道和浇口设计:设计不当的流道和浇口可以导致失败和意想不到的结果。我们的浇注系统的修订,是我们在模具性能方面所作的最显着的变化。作为一般规则,浇口应该尽可能短,以防止聚合物过早冻结在浇口。2. 收缩:可能时,应填写腔的厚截面第一。这确保了最厚的截面仍然可以进行包装,即使薄截面已经完全冻结。3. 系列模具引进困难:当多腔成型,具有不同的几何形状和体积,同时填补腔和平衡流道和浇口控系统是难以适当的。通过模具与浇道切断阀的设计这些困难是可以解决的。参考文献Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluids 7:128Becker H, Gartner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89111Chen G, Svec F, Knapp DR (2008) Light-actuated high pressureresisting microvalve for on-chip flow control based on thermoresponsive nanostructured polymer. Lab Chip 8:11981204Chen CS, Chen SC, Liao WH et al (2010) Micro injection molding of a micro-fluidic platform. Int Commun Heat Mass Transf 37: 12901294Fiorini GS, Chiu DT (2005) Disposable microfluidic devices:fabrication, function, and application. Biotechniques 38:429446 Geiger EJ, Pisano AP, Svec F (2010) A polymer-based microfluidic platform featuring on-chip actuated hydrogel valves for disposable applications. J Microelectromech Syst 19:944950Heckele M, Schomburg WK (2004) Review on micro molding ofthermoplastic polymers. J Micromech Microeng 14:R1R14Kim DS, Lee SH, Ahn CH et al (2006) Disposable integratedmicrofluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6:794802Lee DS, Yang H, Chung KH, Pyo HB (2005) Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols. Anal Chem 77: 54145420Mair DA, Geiger E, Pisano AP et al (2006) Injection moldedmicrofluidic chips featuring integrated interconnects. Lab Chip 6:13461354Mair DA, Rolandi M, Snauko M et al (2007) Room-temperaturebonding for plastic high-pressure microfluidic chips. Anal Chem 79:50975102Mair DA, Schwei TR, Dinio TS et al (2009) Use of photopatterned porous polymer monoliths as passive micromixers to enhance mixing efficiency of on-chip labeling reactions. Lab Chip 9: 877883Rosato DV, Rosato DV, Rosato MG (2000) Injection moldinghandbook. Springer-Verlag, USA Stachowiak TB, Mair DA, Holden TG et al (2007) Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Sep Sci 30:10881093Su YC, Shah J, Lin L (2004) Implementation and analysis ofpolymeric microstructure replication by micro injection molding. J Micromech Microeng 14:415422Tadmor Z (1974) Molecular orientation in injection molding. J Appl Polym Sci 18:17531772Tosello G, Gava A, Hansen HN, Lucchetta G (2010) Study of process parameters effect on the filling phase of micro-injection moulding using weld lines as flow markers. Int J Adv Manuf Technol 47:8197TECHNICAL PAPERDevelopment of an injection molding tool for complex microfluidicgeometriesEmil J. GeigerDieudonne A. MairFrank SvecAlbert P. PisanoReceived: 2 June 2011/Accepted: 15 July 2011/Published online: 28 July 2011? Springer-Verlag 2011AbstractThis paper will track the design and results ofan injection molding tool developed to manufacturemicrofluidic chips. The mold design and injection moldingprocess was complicated by the presence of integratedcapillary fluidic interconnects. We determined that designof the runner and gate system responsible for deliveringmolten plastic to the cavity had a significant impact on thequality of parts produced by the mold and the size of theprocess window. Numerical results confirm our findingsthat reducing gate lengths and increasing part thicknessdramatically improved the filling profile and loweredinjection pressures by 37%. Finally, the influence of gatelocation on part shrinkage is analyzed and discussed.1 IntroductionInjection molding is one of the least expensive manufac-turing technologies for the mass production of microfluidicdevices (Becker and Ga rtner 2008; Fiorini and Chiu 2005;Heckele and Schomburg 2004). This has been a drivingreason behind many of the publications that report usinginjection molding technology for the fabrication of a wide-range of microdevices, including microfluidic devices(Attia et al. 2009; Chen et al. 2010; Kim et al. 2006; Leeet al. 2005; Su et al. 2004; Tosello et al. 2010). However,these papers generally focus on the design of the devicewith limited or no discussion of the design of the mold.One reason for this omission is that the molds represent asignificant cost, and therefore conducting experimentsrelated to mold design are expensive. Furthermore, mostcommercial injection molders design their molds fromextensive experience or with expensive simulation soft-ware, both of which are beyond the reach of most academicresearchers. While there are resources available for con-ventional injection molding design (Rosato et al. 2000),most microfluidic researchers are often left pursuing anexpensive and time consuming trial and error approachwhen designing a microinjection mold for the first time.This paper will examine two revisions of an injectionmolding tool we developed. The resulting parts have beenthe basis for several publications over the past few years(Chen et al. 2008; Geiger et al. 2010; Mair et al. 2007; Mairet al. 2006; Mair et al. 2009; Stachowiak et al. 2007). Themold design was complicated by the inclusion of integratedcapillary fluidic interconnects. While a thorough injectionmold design guide is beyond the scope of this paper, ourintent is to provide some insight into the injection moldingdesign process for the microfluidic community as theyapproach designing their own molds.2 Original injection mold toolThe first mold was designed to address the limitations of alegacy mold, shown in Fig. 1, that existed before the workE. J. Geiger (&)Department of Mechanical Engineering,University of Nevada, Reno, NV 89557, USAe-mail: D. A. MairExponent, 149 Commonwealth Drive,Menlo Park, CA 94025, USAF. SvecMolecular Foundry, Lawrence Berkeley National Laboratory,Berkeley, CA 94720, USAA. P. PisanoDepartment of Mechanical Engineering,University of California, Berkeley, CA 94720, USA123Microsyst Technol (2011) 17:15371540DOI 10.1007/s00542-011-1323-xpresented here. Due to the high pressures needed to com-pletely fill the mold and the gate location, the parts pro-duced were thicker in the middle than the ends. Anyreduction in pressure led to incomplete filling of the moldrather than flatter parts. Hence, a primary goal of the initialdesign was to improve thickness uniformity along the partlength and width. To this end, the runners and gates weredesigned to deliver the polymer melt at multiple locations.The gate length was constrained by the geometry of themicromold insert, which was simply clamped between thetwo sides of the injection mold tool. Along with thisdesign, other features were added to the mold. Mostnotably, capillary fluidic interconnects were integrated withthe part. This allowed us to reduce the amount of postprocessing necessary for working devices (Mair et al.2006). Additionally, the mold was designed as a familymold so that both halves of the chip were molded at thesame time, even though they had vastly different geome-tries and volumes. The main features of the mold aredetailed in Fig. 2.While it was possible to successfully mold usablemicrofluidic devices with this initial design, the moldsuffered from particular weaknesses. First, the parts con-tained high levels of internal residual stresses near thegates. These stresses would result in significant partshrinkage at the gates upon heating during the thermalbonding process. Essentially, the bonding process allowedthe highly stressed polymer to relax, deforming the parts.Second, while the parts were flatter and more consistent,the parts were surprisingly thicker at locations further fromthe sprue. Third, we observed shrinkage at the integratedports, which were thicker than the chip in cross-section.This shrinkage presented itself sometimes as a void and atother times as a sink mark. Finally, there was no retentionmechanism on the micromold insert. Therefore, themicromold insert would often be removed from the moldwith the part, necessitating manual removal.Over the course of approximately a thousand cycles, themold began to wear making it difficult to properly fill themold without flashing. We decided at this time to revise themold to improve its performance. However, in order togain additional insight into the mold design process,Moldflow software (recently acquired by Autodesk, Wal-tham, Massachusetts) was used to model the injectionmolding process. To this end, a post-mortem analysis wasperformed on the initial design and the results agreed veryclosely with the experimental results. Most notably, it wasdiscovered that poor gate design was the root cause for theobserved problems. Specifically, the gates were too long, adesign decision dictated by the geometry of the clampingtechnique used to hold the micromold insert. Therefore, thepressure drop across the gates was too high leading to ahesitation effect at the first gates. In other words, as theplastic flowed through the runner and came to the first gateit would continue down the runner instead of filling thepart. This led to a significant skin forming over the gate dueto the fountain-flow profile of the flowing molten plastic(Tadmor 1974), and the parts actually filled from theback to the front. These results are demonstrated bothnumerically and experimentally in Fig. 3.The observed shrinkage at the integrated ports was alsoconfirmed by the Moldflow analysis. In a typical injectionmolding setup, shrinkage of the part is mitigated bycontinuing to fill the part through the interior of the part asthe plastic cools from the outside. This process is referredFig. 1 Model of legacy mold with key injection molding terminologyhighlighted. Note that the single gate in the center of the part led todramatic variations in thickness along the length of the partFig. 2 The original mold design showing both halves of the moldalong with a cross-section. The runners were extended along bothsides of the cavity with five gates on each side in an effort to improvethickness uniformity. The micromold insert was simply clampedbetween the two mold halves, dictating the length of the gates. Thetwo cavities were molded simultaneously despite the difference involume due to the integrated ports. Note that the cavity has beenthickened in the cross-section for clarity. In the actual mold, the gatesand cavity were the same depth1538Microsyst Technol (2011) 17:15371540123to as packing out the part. In this case, however, for theplastic to fill out the ports it must first flow through thethickness of the chip. Because the chip has a thinner cross-section than the ports, it is difficult to properly pack out theports which continue to cool and shrink after the chip itselffreezes. The filling/packing process was further compli-cated by the dissimilar volumes of the cavities, as thecavity with the ports filled much slower than the featurelesscavity.3 Revised injection mold toolBased on the results and post-mortem analysis of the ori-ginal design, it was clear that the runner/gate system waslimiting the performance of the original mold design.Because the micromold insert clamping technique was adriving factor for the first gate design, we focused ourefforts on redesigning the mold insert clamping mechanismand runner/gate system. The resulting design is shown inFig. 4. This design used mechanical clamps to hold theinsert in place which also served to form the mold cavityand gates. The gates themselves were shortened from 2.5 to0.5 mm to minimize any hesitation as the plastic floweddown the runner. Finally, the cavity thickness for the sidewith the ports was doubled from 0.5 to 1 mm, greatlyimproving flow and balancing the flow between the twocavities. As shown in Fig. 4, the new gate design andthicker cavities reduced the necessary molding pressure by37%, greatly opening up our processing window. Although,it was not possible to inject at the thickest cross-section, wehoped that the lower pressure requirement and thickercavity would allow us to mitigate any shrinkage observedat the thicker port section.With the revised design, the injection molding processhad a significantly larger process window, yielded higherquality parts, and improved shot-to-shot reproducibility toultimately improve yield and minimize waste. Unfortu-nately, shrinkage defects at the ports in the form of voidsand sinks continued to occur occasionally due to thevarying cycle time that resulted from the semi-automaticoperation of the mold base. The new clamping systemoutperformed the previous design, significantly reducedour cycle time, and extended the life of the microfabricatedmold inserts.4 ConclusionsAs detailed in this paper, mold development can be a costlyand time consuming endeavor, particularly for those withlittle experience with the complexities of mold design andpolymer processing. The major conclusions of this workare:1.The importance of a proper runner/gate design:Improperly designed runners and gates can lead tounsuccessful and unexpected results. The revision toour gating system was the most significant change wemade in terms of mold performance. As a general rule,gates should be as short as possible to preventpremature freezing of the polymer in the gate.2.Shrinkage mitigation: When possible, cavities shouldbe filled at the thickest cross-section first. This ensuresthat the thickest cross-sections can still be packed evenafter thinner cross-sections have fully frozen.3.Family molds introduce difficulties: When moldingmultiplecavitieswithdifferentgeometriesandFig. 3 Comparision of experimental results (top) with numericalanalyis (bottom). By successively increasing the shot size, it is clearthat parts tend to fill from the back to the front. This result wasconfirmed numerically as higher pressures are required to fill the frontof the part. This agreement gave us a high confidence in the value ofthe results provide by the Moldflow softwareFig. 4 Numerical model of the revised runner/gate system (top) andclamping mechanism (bottom). Shortening the gates reduced therequired injection pressure from 135 to 85 MPa. The addition of theclamps (dark grey) allowed the insert to be securely fastened andeasily exchanged with other inserts having different microchanneldesignsMicrosyst Technol (2011) 17:153715401539123volumes, it is difficult to properly balance the runner/gate system to fill the cavities simultaneously. Thesedifficulties can be resolved by designing the mold witha sprue shut-off valve to selectively isolate a cavity forproduction.AcknowledgmentsThis work was supported in part by the NSFGraduate Research Fellowship for E. Geiger, and the FANUC Cor-poration. The fabrication steps performed at the Molecular Foundry,Lawrence Berkeley National Laboratory and F. Svec were supportedby the Office of Science, Office of Basic Energy Sciences, U.S.Department of Energy, under Contract No. DE-AC02-05CH11231.We would also like to thank Phil Perry for his assistance in preparingthe images for publication.ReferencesAttia UM, Marson S, Alcock JR (2009) Micro-injection moulding ofpolymer microfluidic devices. Microfluid Nanofluids 7:128Becker H, Ga rtner C (2008) Polymer microfabrication technologiesfor microfluidic systems. Anal Bioanal Chem 390:89111Chen G, Svec F, Knapp DR (2008) Lig
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。