驱动机构底座定位A2.dwg
驱动机构底座定位A2.dwg

玻璃磨边机设计【9张CAD图纸和毕业论文】【机械专业答辩通过】

收藏

压缩包内文档预览:
预览图
编号:349347    类型:共享资源    大小:1.39MB    格式:RAR    上传时间:2014-10-30 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
玻璃 磨边 设计 cad 图纸 毕业论文 机械 专业 答辩 通过
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763


摘要

                         摘要

   玻璃磨边机是玻璃深加工必须的专用设备,其作用是根据需要将玻璃边部磨

削成特定的形状。本文论述了基于S7-226PLC实现的玻璃磨边机设计。文章首先

介绍了玻璃磨边机的现状及其在设计中要实现的磨削花型。其磨削花型分别是:

磨直线斜边、磨靠边基本波浪边、磨直线波浪边、磨双直线波浪边、磨树叶型波

浪边、磨直线树叶波浪边。随后介绍了玻璃磨边机控制系统的设计情况。其硬件

设计采用S7-226PLC作为控制核心,加上相应的接口电路、通讯装置和智能化软

件设计,由其高速计数装置并通过旋转编码器检测电机转速,通过PLC输出控制

磨轮进给电机和磨轮旋转电机进而控制磨削不同花型:PLC的程序完成了各种开

关量信号的采集,磨轮旋转角度和磨轮进给参数的采集,磨轮旋转角度和磨轮进

给参数的计算、输出控制等功能,文章对其进行了分析。作者选用了PWS1711

机界面对玻璃磨边机进行实时监视和参数设置,文章介绍了玻璃磨边机人机界面

软件设计,包括主画面、磨直线斜边子画面、参数设置画面、控制画面、手动调

整画面、调试画面等。为进一步提高磨削精度,作者将原方案中控制磨轮进给的

普通电机改由伺服电机来完成,文章最后对其控制思想进行了讨论,并给出了基

PLC实现的模糊PID程序设计。

关键词:PLC;玻璃磨边机;人机界面:PID;磨轮

绪论

1绪论

1.,课题来源及意义

   上世纪80年代随着交通、建筑和旅游业的迅速发展,对深加工玻璃的需求越

来越多,使玻璃深加工行业得到了较快的发展,玻璃深加工的产量上升较快。大批

浮法玻璃生产线的建成投产,给玻璃深加工提供了优质玻璃原片:建筑业、交通业

发展的加快和档次的提高,为深加工玻璃的应用开辟了广阔的市场;但是,由于玻

璃加工机械水平的影响,大部分玻璃深加工企业的生产能力并没有充分发挥出来。

由于世界主要玻璃生产企业对平板玻璃以及其它品种的玻璃都在寻求新的利润增

长点,产品创新、新工艺探索、降低成本、产生高附加值等己成为各大玻璃厂商

发展的目标。因此目前世界上5096-60%的平板玻璃原片均进行深加工后再上市,

浮法玻璃原片己不再风光,而是向功能型、实用型、装饰型、安全型、环保型五

大方向的深加工玻璃发展,这是21世纪平板玻璃创新产品不容争议的目标。近年

来,我国玻璃深加工企业发展很快,数量不断增加,规模越来越大,玻璃磨边机

作为玻璃深加工企业必须的专用设备,其市场需求也将越来越多。然而到目前为

止,国内玻璃磨边设备还不很成熟,大多只适合单件加工,而不能应用于批量生

产线。大型玻璃深加工企业必须采用自动化程度高的智能玻璃磨边机。

   由于现阶段国产玻璃磨边机自动化程度较低,难以满足玻璃深加工行业快速

发展的要求,因此安徽理工大学与方圆玻璃机械厂合作进行智能玻璃磨边机研制。

1.2玻玻磨边机的主要种类及特点

 目前国内玻璃深加工企业使用较多的几种玻璃磨边机如下〔23 [4] [10]

(l)单臂异形磨边机(简称异形机或单臂机)

   异形机的最大特点是用途广泛,异形机既可以磨直边,也可磨圆边、鸭嘴边,

还可磨斜边;既可以磨圆形工件,也可磨椭圆及异形工件。在独立吸盘上装上靠

模,用异形机可以磨一些形状不规则的工件。

(2)直线磨边机

   直线磨边机的特点有三个:一是用途比较单一,只能磨各类直线边;二是可

连续性磨削,生产效率较高:三是可磨削尺寸较大的平板玻璃。

   直线磨边机是各类磨边机中品种、规格最多的磨边机,按能磨削的直线边的

不同,它又可分为如下三种:

1)直线磨边机(简称直边机)

   直边机只能磨削玻璃的平底边及两棱角,按磨头数分,有三、五、八、九、

十、十三、十四磨头等数种机型。一般来说,磨头数越多,则磨削精度和生产效

率越高,相应地机器的价格也越高。而电脑控制的直边机(一般磨头数都在十或

十以上)价格更高。

   近些年来,国内市场上又出现一种既可磨平底边,又可磨45度底边的两用直

边机,用量也比较多。另外还有可磨一组或两组互成角度底边的磨边机,叫多级

磨边机。这种机型磨头较多,一般为计算机控制。

2)直线圆(简称圆边机)

   圆边机可以磨削玻璃的圆边、鸭嘴边等,在家具、玻璃的加工中用的较多。

圆边机也有三、五、六、七、八、九磨头等数种机型。

3)直线斜边机(简称斜边机)

   斜边机一般用于磨削玻璃3-20度的斜边。现在,有的斜边机也可磨削45

度的斜边。斜边机按磨头数分,也有七、八、九、十、十一、十四磨头等机型。

近些年来又出现一种能在玻璃斜边上磨出各种波浪花纹的斜边机,叫波浪斜边机。

 (3)靠模磨边机(简称靠模机仿形机)

   靠模机利用模板准确定位,可精确磨削圆形或异形玻璃的直边、圆边、鸭嘴

边、斜边等,这种磨边机磨出的玻璃形状准确,尺寸统一,生产效率较高。

   使用靠模磨边机需要制作专门的模板,当生产品种较多时,不但制作模板费

用较高,而且管理、更换模板也较麻烦,因此这种机型适用于生产品种不多,但

生产批量很大的玻璃加工。

 (4)内圆磨边机(简称内圆机)

   内圆机的特点是结构简单,价格低廉,但用途比较单一,主要适于加工圆周

(可以是正圆,也可是椭圆或异形圆)。现国内有些厂生产的内圆机,摆臂较长,

使磨头的摆动范围加大。这种机型不但可磨内圆,也可兼磨外圆,又称为内外圆

磨边机。

 (5)直线双边磨边机(简称双边磨机)

   双边磨机的特点是可同时磨削玻璃的两条对边,加工精度好,生产效率高,

适用于大批量的玻璃磨边生产。

   双边磨机按使用性能分有双直边磨边机和双圆边磨边机两种,其中双直边磨

边机用的较多。

双边磨机按磨削玻璃宽度的不同可分为中小型和大型两种。最大磨削宽度在

两米以下的称为中、小型双边磨机,磨头配置有四、六、八、十二磨头等。最大

磨削宽度在两米及两米以上的称为大型双边磨机,磨头配置有十六、二十、二十

二磨头等。大型双边磨机一般为电脑控制,自动化程度较高,适于磨削大尺寸平

板玻璃,但是,这种设备的价格比较昂贵。

(6)其他磨边机及专用磨边机

   除以上介绍的磨边机以外,还有一些结构简单、用途单一的磨边机,如倒角

机、小圆片机、抛光机等。另外还有一些专门加工某种产品的专用磨边机,如汽

车后视镜磨边机、洗手盆磨边机等。

1.3国内外发展与应用情况

   目前玻璃磨边机设备不少是进口的,进口磨边机主要来自意大利生产,另外

还有来自韩国、美国、台湾等地的磨边机用的也较多〔日。进口机的质量、精度、

生产效率和使用寿命都要比国内机好,但进口机价格昂贵,一般为国内同类机价

格的3-10倍。玻璃磨边机目前仍以进口设备为主,虽然国外这方面的技术和设备

都很成熟,在国际市场上也应用广泛,但完全依赖进口设备的缺点也是明显的,

首先进口设备价格昂贵,需花费大量的外汇;其次它的定货周期、购买备品备件的

周期长,对正常生产造成一定的影响,特别是设备的控制软件部分,由于保密性

强而无从深入了解,功能扩展性差,一旦出现问题就必须等国外的专家来维护和

调试,对正常生产有很大的影响,故研制和开发国产的智能玻璃磨边机的重要性

是显而易见的,不仅能够提高玻璃加工技术水平和市场竞争力,而且随着玻璃深

加工行业的迅猛发展,该设备的应用前景也是很广阔的。

1.4本文的主要工作

   玻璃磨边机的作用是根据需要将玻璃边部磨削成特定的形状。其机械结构主

要由磨削进给系统和加工工作台两部分构成。加工工作台上放置被加工的玻璃,

玻璃靠普通交流电机驱动在加工工作台上移动,磨削砂轮的转动也由普通交流电

机驱动.,磨削进给系统也采用普通交流电机驱动,用以控制磨削砂轮的运动轨迹,

以便将玻璃边部磨削成不同的形状。这也是应方圆玻璃机械有限公司的要求而设

计的方案,本文第3章与第5章对其进行了详细介绍。为了进一步提高磨削精

度,

作者对上述方案进行了改进,将普通电机的工作改由伺服电机完成,本文第6

给予了分析。本文主要工作包括:

   玻璃磨边机的总体设计

   玻璃磨边机的电气控制部分硬件设计

   可编程控制器的选型、模块设计

   旋转编码器及高速计数器分析

   人机界面选型、设计

   PLC与人机界面的程序设计

   基于PLC的模糊PID设计等。

1.5本章小结

   本章对课题的来源和意义、玻璃磨边机的结构组成、玻璃磨边机的主要种类

及特点、目前国内外应用情况、玻璃磨边机的主要参数以及本文的主要工作等做

了简要介绍。


内容简介:
DOI:10.1007/s00339-007-3930-zAppl. Phys.A 87, 691695(2007)Materials Science & ProcessingAppliedPhysicsAy.hayasakiud.kawamuraHigh-density bump formation on a glass surfaceusing femtosecond laser processing in waterDepartment of Optical Science and Technology, Faculty of Engineering, The University of Tokushima,2-1 Minamijosanjima-cho, Tokushima 770-8506, JapanReceived: 13 November 2006/Accepted:29 January2007Published online: 29 March 2007 Springer-Verlag 2007ABSTRACTMicrometer-sized bumps were formed on a glasssurface using a focused femtosecond laser processing in water.The bumps were formed over a wide ranges of pulse irradiationparameters,including irradiation energyandfocusposition. Thebumps exhibited a wide variety of morphologies and sizes de-pending on the parameters. The use of a liquid, namely heavywater, which returns after breakdown and cavitation bubble for-mation, enabled us to fabricate bumps with high spatial density,which is not possible using a solid coating that is ablated. A de-siredarrangementofbumps onaglass surfacewasfabricatedbytuning the processing time interval to be more than the disap-pearancetimeofabubble, generatedby focusing afemtosecondlaser pulse near the water/glass interface.PACS42.62.Cf; 42.70.Ce; 52.38.Mf; 78.47.+p; 79.20.Ds1IntroductionFemtosecond lasers are powerful tools for micro-and nano-structuring of transparent materials because theycan process with high spatial resolution resulting from mul-tiple photon absorption, and reduced thermal damage due tothe ultra-short interaction time between the laser pulse andthe material, as well as various physical phenomena causedby the ultra-high intensity of the laser pulse 111. Fem-tosecond laser processing is being increasingly applied tothe development of three-dimensional optical and fluidic de-vices7,8,1014.Asthemorphologyoftheprocessedtrans-parentmaterialisrelatedtothethermaleffectsofvaporizationand dissolution due to thermal diffusion, interaction with thehotvapor plume, and a low-energy-density region in the laserpulse, it is highly sensitive to not only the physical proper-tiesofthematerial,butalsotothelaserirradiationparameters,such as the wavelength, pulse duration, pulse energy, numer-ical aperture of the focused beam, and the focus position. Inparticular, whenafemtosecond laserpulseisfocusednear thesurfaceofatransparentmaterial,adifferenceinthefocuspos-itiongivesrisetoalargedifferenceinthesurfacemorphology.u Fax: +81-88-656-9435, E-mail: hayasakiopt.tokushima-u.ac.jpThe typical surface morphology of glass processed bya tightly-focused femtosecond laser pulse, changes froma cavity to a bump when the focus position changes from theoutside to the inside of the glass. The cavity is surroundedby a ring-shaped protrusion and scattered debris. Their size,and the amount of debris strongly depends on the focus pos-ition also. A bump with a diameter from several hundrednanometers to several micrometers is formed by melting theglass surface with the melted glass being pushed up by a mi-croexplosion inside the glass 1520. Due to the ranges offocal position and irradiation pulse energy, the surface melt-ingandtheinternalmicroexplosionoccursimultaneouslyandthe bumps formed are very narrow. Bumps typically exhibitssmallvariation in sizeand structure.In a previous study, we found that a transparent coatingon the glass for decreasing the amount of debris attachedto the glass surface allows bump formation over a slightlywider range of focal positions compared to bare glass, whenthe coating thickness is sufficiently larger than the length ofthe focal volume 19,21. Furthermore, we found that whenthe coating thickness is shorter than the length of the fo-cal volume, that is, when the coating surface is ablated bya single laser pulse focused at the boundary between thetransparent coating and the glass, bumps were produced overa fairly wide range of focus positions compared to usinga thick coating 20. From those investigations, we believethat the amount of coating material ablated in the focal vol-ume, which depends on the coating thickness, affects thestrength of a shielding effect of the plasma generated whenablating the coating. As a result, the size and structure ofthe formed bump can be changed. The transparent coatingmethod has the disadvantage that the spatial density of thebumpsislimitedtoseveralmicrometersbecauseofablationofthetransparent coating. In order to achieve controllable fabri-cationofbumpswithahighdensity,itispossibleto useliquidon the transparent material in place of the transparent coatingduringfemtosecondlaser processing,becausetheliquid natu-rally returns after breakdown and bubble formation. Fabrica-tionofcomplexstructuresonasiliconsurfacebyfemtosecondlaserprocessing inwater has beendemonstrated 2224.In this paper, we demonstrate formation of high-densitymicrometer-sized bumps by femtosecond laser processing inwater. In Sect. 2, we describe the experimental setup and692Applied Physics A Materials Science & Processingprocedure. In Sect. 3, we describe the experimental results.We investigated the effects of irradiation parameters, includ-ing energy and focal position, on the morphology and sizeof the bumps. We demonstrated that, by tuning the process-ing time interval to be more than the disappearance time ofa bubble 2528 generated by a femtosecond laser pulse fo-cused near the water/glass interface, we could fabricate a de-siredstructureontheglasssurface, composedofhigh-densitybumps.InSect. 4,weconclude ourstudy.2Experimental setup and procedureThe experimental setup consisted of an amplifiedfemtosecond laser and an optical microscope and is shownin Fig. 1. It was the same as the setup used in our pre-vious work 19,20. The amplified femtosecond laser pro-duced pulses with a peak wavelength of800nm, a durationof 150fs, and a maximum repetition rate of1 kHz. Theirradiation pulse energyEat the sample was controlled byneutraldensityfilters,andisgivenbytheproductoftheenergymeasured before introducing the laser pulse into the opticalmicroscope(Olympus,IX70)andthetransmittance oftheop-tical microscope, including a40objective lens (numericalaperture,NA = 0.65). The transmittance of the microscopewas0.69.The processedareawas observedunder transmittedillumination by a usual charge-coupled device (CCD) imagesensor with the frame rate of30frames/s. The focus positionZof the laser pulse was defined as the distance moved alongthe optical axis by the microscope stage. The zero position(Z = 0) was defined as the position where a structure wasformedontheglasssurfacebyirradiation ofalaserpulsewithnearablation threshold energy.The structure of the sample is also shown in Fig. 1. Thesample was prepared as follows. Four ordinary microscopecover slips (Matsunami) which were subjected to ultrasoniccleaning in ethanol and pure water were prepared. They wereFIGURE 1Experimental setup and the structure of the sample. The spacerglasses were removed when the processing was performeda target glass, a window glass for sandwiching water, andtwo spacer glasses with a thickness of130m. Poly-methylmethacrylate (PMMA)with toluene solventwas used to formwalls on the window glass. After sufficiently evaporating thesolvent the spacer glasses were removed, and a small cham-ber with a side length of1015mmcomposed of the PMMAwalls on the glass was formed. Water was dropped in thesmall chamber and the target glass was fixed on the chamberwith a small amount of the PMMA that was used as a glue.In this experiment, deuterium oxide (heavy water, hereafterreferred to simply as “water”) was used because of its lowlinearabsorptionaroundthewavelengthof800nm.Afterpro-cessing, the target glass was removed from the chamber andsubjected to ultrasonic cleaning in pure water and ethanol.Thesurfacestructureoftheprocessedareawasobservedwithan atomic force microscope (AFM; Digital Instruments, Di-mension3000).3Experimental resultsFigure 2 shows structures processed in water overa range ofZfrom4.0to12.0mwhen the energyEwas2.1J. Figure 2a and b show an AFM image and its corres-ponding profile, whose vertical range is500nm. Figure 2cand d showtop and side views of the processed area observedwith the transmission optical microscope. Figure 2e showsthe diameter and height of the bumps, which were obtainedfrom the AFM observation, and the length of a void, whichFIGURE 2(a) AFM images of the processed area and (b) their profiles.Theirradiation energy was 2.1 J.The vertical range is500 nm.(c) Topand(d) side views observed with a transmission optical microscope. (e) Diameterand height of bumps versus focus position, and the length of voids formed inthe glass versus focus positionHAYASAKIet al. High-density bump formation on a glass surface using femtosecond laser processing in water693was obtained from a side view observation. The bumps wereformed on the glass surface over a wide range ofZ, from4.0to8.0m.AsZincreased,theheightanddiameterofthebumps increased. WhenZwas6.0m, the bump had a max-imumheightof400 nmandadiameterof3.6 m.WhenZwas8.0m,alowbumpwithaheightof50nmwasformed.WhenZwasgreaterthan8.0m,voidswereformedinsidetheglassandno structurewasformedon theglasssurface.The length of the void under the bump also increased asZincreased. The voids formed whenZwas 4 to12mwerenearlyequalinlength.Undermoredetailed observationintheside view shown in Fig. 2d, we found that the voids had dif-ferent gray levels whenZwas between 6.0 and8.0m. ThedarkhueofthevoidsunderthehighbumpsatZ = 3.0mandZ = 6.0mwas darker than those of the voids formed com-pletelyinsidetheglass.Weexpectedthevoidinthehighbumpto have lower density than the others, because an internal mi-croexplosiondisplaced theglass material fromthefocal pointandformedthehighbump,thuscausingadecreaseindensity.This bump formation phenomenon is the same as that ob-served in our previous study in which glass having a trans-parentpolymercoating wasprocessed.Theprincipleofbumpformation in that study was based on the suppression of thematerial emission from the glass surface by a shielding effectof plasma generated by ablation of the polymer and by phys-ical blocking of the polymer. One difference in the presentstudy is that thebump formation in the glass processed in wa-ter occurs over a wider range ofZ, as shown in Fig. 3. Theirradiation beam parameters werealmost the sameas our pre-vious experiments (shown in Fig. 3 in 19). The irradiationenergy wasE = 0.69J. When processing glass with a poly-mercoating,bumpformation wasobservedwhenZwas1.0to4.0m20 whereas when processing in water, bump for-mation was observed whenZwas4.0to7.0m. The mainreason for the difference is that the physical blocking of wa-ter is weaker than that of the polymer coating. This is furthersupported by the results for structures processed with highpulse energies, above several microjoules, discussed in thenextparagraph.Figure 4 shows AFM images of the processed structuresforvariousenergiesEwhenZ = 0.BumpswereformedwhenEwas 0.17 to6.9J, and their structures drastically changeddepending onE. The diameter and height of the bump in-creased asEincreased to4.1J. WhenEwas4.1J, thediameter was5.1mand the height was1.57m. With fur-ther increase ofE, both dimensions decreased. WhenE 2.1J, there was little debris around the periphery of thebump. Although, whenE 2.1J, debris was distributedaround the periphery, and the amount of debris increased asEincreased. The scattered region of the debris is indicatedby the squares on the solid lines in Fig. 4. Processing in wa-ter produced more scattered debris around the bump thanprocessingwith anapplied polymercoating. Thisfurther sup-ports the assertion that water had weaker physical blockingthanthepolymer coating. Mostofthedebriswasnotremovedby ultrasonic cleaning in water. Therefore, the glass materialscattered in the liquid state at the glass/water interface ad-heredto theglasssurfaceand solidified.Figure 5 show bumps arranged in a straight line with highdensity. The linearly-arranged bumps were processed by ir-FIGURE 3Diameter and height of bumps versus focus position. E was0.69 JFIGURE 4AFM images of the structures processed with (a) E = 0.69 J,(b) E = 2.8 J, (c) E = 4.1 J, (d) E = 4.8 J, (e) E = 5.5 J and (f)E = 6.9 J. (g) Diameter and height of bump and debris diameter versusirradiation energyradiating the laser pulses at a spatial interval shorter than thediameter of a single bump. In this case, the spatial intervalDwas set to2.0m, under the condition that a single bumpwith a diameter of3.6mand a height of56nmwas formedwhenEwas3.5JandZwas6.0m. The structure wasprocessed by scanning the microscope stage so that a singlepulse was irradiated at each location, repeated at a repetitionrateRof1Hz.The shape of the linearly-arranged bumps was controlledby changingD, as shown in Fig. 6a and b. WhenDwas0.8m, the bumps were smoothly connected, to form a lineof bumps. WhenDwas5.0m, that is, whenDwas suffi-ciently larger than the bump diameter, the bumps had isolatedpeaks.694Applied Physics A Materials Science & ProcessingFIGURE 5AFM observation of linearly-arranged bumps formed underE = 3.5 J, Z = 6.0m, R = 1 Hz, and D = 2.0 m. (a) and (b) are the pro-files across and along the linearly-arranged bumps. The vertical range of theprofiles is 250 nm and its horizontal length is 60 mFIGURE 6Surface structures formed under various conditions. The sameirradiation energy of E = 2.1 J was used. In (a) and (b), Z = 6.0 m andR = 1 Hz, and the pulse irradiation spatial intervals of (a) D = 0.8 m and(b) D =5.0 mwere different. In (c) and (d), R =1Hz and D =0.5 m, andthe focus positions of (c) Z = 6.0 m and (d) Z = 3.0 m were different. In(e) and (f), Z = 6.0 m and D = 0.5 m, and the repetition rates of (e) R =2Hz and (f) R = 5Hz were different. The AFM images are 88 m2To fabricate bumps with high density,ZandRwerecarefully chosen, in addition toEandD. With the irradi-ation conditionsZ = 6.0m,E = 2.1J,D = 0.5m, andR = 1 Hz, a smooth line of bumps with a uniform height wasFIGURE 7Bubbles generated on the water/glass interface observed withaCCD image sensor, when the elapsed time (a)t =2/30, (b)8/30, (c)12/30,and (d) 13/30 s. (e) The disappearance time of bubbles for the pulse energy.Three measurements at each pulse energy are indicated as the center filledcircle and the barsformed, as shown in Fig. 6c. The width and height of theline of the bumps were about4.2mand60nm, respectively.With the irradiation conditionsZ = 3.0m,E = 2.1J,D =0.5m, andR = 1Hz, many sub-micrometer sized spikeswere formed, as shown in Fig. 6d. The irregularly shapedstructures were formed as a result of a single bump formedby the previous laser pulse being destroyed by the next laserpulse, because the energy density at the glass surface enabledablationoftheformedbumpwhenthefocuspositionwasneartheglasssurface.Selection of the repetition rateRwas also important informing high-density bumps. Figure 6e and f show AFM im-ages of a structure processed withR = 2and5 Hz, respec-tively. The other conditions (Z = 6.0m,E = 2.1J, andD = 0.5m)werethesame asthosein theexperiment shownin Fig. 6c. This difference depending only onRwas stronglyrelatedtothedisappearancetimeofthecavitation bubblegen-erated byplasmaformation atthewater/glassinterface.Figure 7ad show the bubble generated at the water/glassinterface observed with the CCD image sensor whenE =4.8JandZ = 0.0m. As the expansion of a bubble is lessthan10s28,itcannotbecapturedwithanordinaryCCDimage sensor. Only the contraction of a bubble was observed,as shown in Fig. 7ac. In Fig. 7d, the circular pattern wasthelaser-processed structure,becauseitdidntchangetempo-rally.Theelapsedtimet = 0wasdefinedasthetime whenthebubblewasobserved.ThedisappearancetimeofthebubbleTdHAYASAKIet al. High-density bump formation on a glass surface using femtosecond laser processing in water695was the time from generation to extinction of the bubble. Be-cause the CCD image sensor with30frames/swas used, thetemporalresolution of themeasurement was33ms.Figure7eshows the disappearance timeTdfor the pulse energyE. Webelieve that the bubble mainly consisted of gaseous hydro-gen, oxygen, and water vapor. The laser irradiation in thepresence of bubbles was equivalent to laser irradiation not inwater, but in gas. Consequently, when the time interval be-tween irradiated pulses was shorter than the disappearancetime of the bubble, the suppression of the material emissionfrom the glass surface by a shielding effect of plasma and bya physical blocking of a covered material became weak, anda single bump formed by the first laser pulse was destroyedby the second laser pulse, resulting in the formation of an ir-regular structure. As shown in Fig. 6f, the irregular structurewas formed under the repetition rate of5Hz, becauseTdwas 250mswhenEwas2.1J.4ConclusionsWe have demonstrated bump formation on a glasssurface using femtosecond laser processing in water. We in-vestigated the effect of the irradiation energy and focus pos-ition of the focused-femtosecond laser pulse on the morph-ology of the bump. Bumps with high spatial density wereprocessed by irradiating the laser pulses with a spatial inter-val between irradiation positions shorter than the diameter ofa single bump. In order to form well-defined, high-densitybumps, it was important to select appropriate parameters, in-cluding the processing time interval, the irradiation energy,thefocus position, and thespatial interval. A desired arrange-mentofbumpswithhighspatialdensityonaglasssurfacewasfabricated by tuning the processing time interval to be morethan the disappearance time of a cavitation bubble, generatedby a femtosecond laser pulse focused near the water/glassinterface.ACKNOWLEDGEMENTSThis work was supported by TheVenture Business Incubation Laboratory of The University of Tokushima,The Asahi Glass Foundation, The Murata Science Foundation, Science andTechnology Incubation Program in Advanced Regions, Research for Promot-ing Technological Seeds from the Japan Science and Technology Agency,and Grant-in Aid for Scientific Research (B) #16360035 from the Ministryof Education, Culture, Sports, Science and Technology.REFERENCES1 D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071(1994)2 H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto,M. Obara, Appl. Phys. Lett. 65, 1850 (1994)3 B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys.Rev. Lett. 74, 2248 (1995)4 D. von der Linde, H. Schler, J. Opt. Soc. Am. B 13, 216 (1996)5 H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack,E.E.B. Cam
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:玻璃磨边机设计【9张CAD图纸和毕业论文】【机械专业答辩通过】
链接地址:https://www.renrendoc.com/p-349347.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!