



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层作业(二十四)几类不同增长的函数模型(建议用时:40分钟)学业达标练一、选择题1当a1时,有下列结论:指数函数yax,当a越大时,其函数值的增长越快;指数函数yax,当a越小时,其函数值的增长越快;对数函数ylogax,当a越大时,其函数值的增长越快;对数函数ylogax,当a越小时,其函数值的增长越快其中正确的结论是() abc db结合指数函数及对数函数的图象可知正确故选b.2y12x,y2x2,y3log2x,当2xy2y3 by2y1y3cy1y3y2 dy2y3y1b在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2x2,y12x,y3log2x,故y2y1y3.3某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是() ay0.2x by(x22x)cy dy0.2log16xc用排除法,当x1时,排除b项;当x2时,排除d项;当x3时,排除a项4在某实验中,测得变量x和变量y之间对应数据,如表x0.500.992.013.98y1.010.010.982.00则x,y最合适的函数是()ay2x byx21cy2x2 dylog2xd根据x0.50,y1.01,代入计算,可以排除a;根据x2.01,y0.98,代入计算,可以排除b、c;将各数据代入函数ylog2x,可知满足题意故选d.5四人赛跑,假设他们跑过的路程fi(x)(其中i1,2,3,4)和时间x(x1)的函数关系分别是f1(x)x2,f2(x)4x,f3(x)log2x,f4(x)2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()af1(x)x2 bf2(x)4xcf3(x)log2x df4(x)2xd显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)2x,故选d.二、填空题6函数yx2与函数yxln x在区间(0,)上增长较快的一个是_ .yx2当x变大时,x比ln x增长要快,x2要比xln x增长的要快7在不考虑空气阻力的情况下,火箭的最大速度v米/秒和燃料的质量m千克、火箭(除燃料外)的质量m千克的函数关系式是v2 000ln.当燃料质量是火箭质量的_倍时,火箭的最大速度可达12千米/秒. e61当v12 000时,2 000ln12 000,ln6,e61.8某种病菌经30分钟繁殖为原来的2倍,且知这种病菌的繁殖规律为yekt(k为常数,t为时间,单位:小时),y表示病菌个数,则k_;经过5小时,1个病菌能繁殖为_个2ln 21 024设病菌原来有1个,则半小时后为2个,得2e,解得k2ln 2,y(5)e(2ln 2)5e10ln 22101 024(个)三、解答题9函数f(x)1.1x,g(x)ln x1,h(x)x的图象如图324所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点). 图324解由指数爆炸、对数增长、幂函数增长的差异可得曲线c1对应的函数是f(x)1.1x,曲线c2对应的函数是h(x)x,曲线c3对应的函数是g(x)ln x1.由题图知,当xh(x)g(x);当1xg(x)h(x);当exf(x)h(x);当axh(x)f(x);当bxg(x)f(x);当cxf(x)g(x);当xd时,f(x)h(x)g(x)10某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择hmtb与hloga(t1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度t(年)123456h(米)0.611.31.51.61.7解据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理将(2,1)代入到hloga(t1)中,得1loga3,解得a3.即hlog3(t1)当t8时,hlog3(81)2,故可预测第8年松树的高度为2米冲a挑战练1函数y2xx2的图象大致是()abcda分别画出y2x,yx2的图象,由图象可知(图略),有3个交点,函数y2xx2的图象与x轴有3个交点,故排除b,c;当x1时,y0,故排除d,故选a.2某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数yf(x)的图象大致为()abcdd设该林区的森林原有蓄积量为a,由题意可得axa(10.104)y,故ylog1.104x(x1),所以函数yf(x)的图象大致为d中图象,故选d.3若已知16xlog2x作出f(x)x和g(x)log2x的图象,如图所示:由图象可知,在(0,4)内,xlog2x;x4或x16时,xlog2x;在(4,16)内xlog2x.4已知某工厂生产某种产品的月产量y与月份x满足关系ya(0.5)xb,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件则此厂3月份该产品的产量为_万件175ya(0.5)xb,且当x1时,y1,当x2时,y1.5,则有解得y2(0.5)x2.当x3时,y20.12521.75(万件)5某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y0.2x,ylog5x,y1.02x,其中哪个模型符合该校的要求? 解借助工具作出函数y3,y0.2x,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沧州市中医院护理信息化管理考核
- 2025湖北大学博士后、师资博士后招聘考前自测高频考点模拟试题及答案详解(名师系列)
- 2025贵州省农业科学院引进急需紧缺人才3人考前自测高频考点模拟试题及答案详解(名校卷)
- 2025年杭州拱墅区朝晖街道社区卫生服务中心招聘编外聘用人员1人模拟试卷及答案详解(网校专用)
- 2025中心医院成本效益分析模型构建与应用试题
- 2025北京市城市管理委员会直属事业单位招聘10人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年泉州德化县公办学校专项招聘编制内新任教师19人(二)考前自测高频考点模拟试题及完整答案详解1套
- 2025南平市延平区人民检察院驾驶员招聘模拟试卷及答案详解参考
- 沧州市中医院老年医学信息化考核
- 沧州市人民医院种植修复技术专项技能考核
- 养老院电器安全知识培训课件
- 《煤矿安全质量标准化标准》
- 2025年马鞍山和县安徽和州文化旅游集团有限公司招聘5人考试历年参考题附答案详解
- 学习型班组汇报
- 西藏介绍课件
- 新高考地理备考策略
- 会务理论考试题及答案
- 龙宗智证据构造课件
- 生物制药行业2025技术突破与药物研发进展报告
- 雷达原理基础知识课件
- 2025年南京市事业单位招聘考试教师招聘物理学科专业知识试卷
评论
0/150
提交评论