




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第15讲函数与方程题型1函数零点个数的判断(对应学生用书第50页)核心知识储备1零点存在性定理如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,且有f(a)f(b)0),所以nln xx0.令g(x)nln xx,则函数fn(x)的零点与函数g(x)nln xx的零点相同因为g(x)1,令g(x)0,得xn,所以当xn时,g(x)0;当0x0,所以函数g(x)在区间(0,n上单调递增,在区间n,)上单调递减所以函数g(x)在xn处有最大值,且g(n)nln nn.当n1时,g(1)ln 1110,所以函数g(x)nln xx的零点个数为0;当n2时,g(2)2ln 22n(ln e1)0,因为g(e2n)nln e2ne2n2n24n2n2(13)n2n22n213n3n(n1)n210,且g(1)0,所以由函数零点的存在性定理,可得函数g(x)nln xx在区间(1,n)和(n,)内都恰有一个零点所以函数g(x)nln xx的零点个数为2.综上所述,当n1或n2时,函数fn(x)的零点个数为0;当n3且nn*时,函数fn(x)的零点个数为2.类题通法1.求函数零点个数的两种方法:(1)由函数零点存在性定理,结合函数的单调性判断;(2)由函数的单调性及函数极值的正负来确定.2.零点个数的讨论,对于不可求的零点,需要通过方程转化为初等函数的交点个数判断.3.零点讨论中的参数,针对参数的讨论有两个方向:一是方程根的个数;二是参数对构造的初等函数图象形状的影响.对点即时训练1已知函数f(x),则函数f(x)ff(x)2f(x)的零点个数是()a4b5c6d7a(数形结合思想)令f(x)t,则函数f(x)可化为yf(t)2t,则函数f(x)的零点问题可转化为方程f(t)2t0有根的问题令yf(t)2t0,即f(t)2t,如图(1),由数形结合得t10,1t22,如图(2),再由数形结合得,当f(x)0时,x2,有1个解,当f(x)t2时,有3个解,所以f(x)ff(x)2f(x)共有4个零点故选a.图(1)图(2)2函数f(x)cos 2x在区间3,3上零点的个数为()a3b4c5d6 c设函数g(x)1x,h(x)cos 2x,则f(x)g(x)h(x),g(x)1xx2x3x2 015x2 016(1x)x2(1x)x2 014(1x)x2 016.当3x1时,显然g(x)0;g(x)1x(x1)x3(x1)x2 015(x1),当10,所以g(x)在区间3,3上是增函数,又g(1)0,所以g(x)在区间3,3上有且只有1个零点x0(1,0),且x0.h(x)cos 2x在区间3,3上有4个零点:,所以函数f(x)g(x)h(x)在区间3,3上有5个零点题型强化集训(见专题限时集训t2、t5、t6、t13、t14)题型2已知函数的零点个数求参数的取值范围(对应学生用书第51页)核心知识储备已知函数有零点(方程有根或图象有交点)求参数的值或取值范围常用的方法:直接法:直接根据题设条件构建关于参数的方程或不等式,再通过解方程或不等式确定参数的值或取值范围分离参数法:先将参数分离,转化成求函数最值问题加以解决数形结合法:在同一平面直角坐标系中画出函数的图象,然后数形结合求解典题试解寻法【典题1】(考查已知函数的零点个数求参数范围)(2017太原二模)已知f(x)x2ex,若函数g(x)f2(x)kf(x)1恰有四个零点,则实数k的取值范围是()a(,2)(2,)b.c.d思路分析f(x)x2ex画f(x)的图象g(x)有四个零点方程t2kt10在和各有1解实数k的取值范围解析(数形结合思想)f(x)xex(x2),令f(x)0,得f(x)的单调递增区间为(,2),(0,),令f(x)0为函数f(x)的极大值,f(0)0为函数f(x)的极小值,故f(x)0,作出其函数图象如图所示因为函数g(x)f2(x)kf(x)1恰有四个零点,令f(x)t,则关于t的方程t2kt10有两个不相同的根,记为t1,t2,且0t14e2,4e2,故选d.答案d【典题2】(考查已知方程根的个数求参数范围)已知函数f(x),其中m0.若存在实数b,使得关于x的方程f(x)b有三个不同的根,则m的取值范围是_. 【导学号:07804106】思路分析方程f(x)b有三个不同的根函数f(x)与函数yb有三个不同的交点依据m的取值画函数f(x)的图象求m的取值范围解析f(x)当xm时,f(x)x22mx4m(xm)24mm2,其顶点为(m,4mm2);当xm时,函数f(x)的图象与直线xm的交点为q(m,m)当即03时,函数f(x)的图象如图(2)所示,则存在实数b满足4mm2bm,使得直线yb与函数f(x)的图象有三个不同的交点,符合题意综上,m的取值范围为(3,)图(1) 图(2)答案(3,)【典题3】(考查导数在函数零点中的应用)(2016全国卷节选)已知函数f(x)(x2)exa(x1)2有两个零点,求a的取值范围思路分析求f(x)求函数的单调性及极值确定a的取值范围解f(x)(x1)ex2a(x1)(x1)(ex2a)设a0,则f(x)(x2)ex,f(x)只有一个零点设a0,则当x(,1)时,f(x)0;当x(1,)时,f(x)0,所以f(x)在(,1)内单调递减,在(1,)内单调递增又f(1)e,f(2)a,取b满足b0且bln ,则f(b)(b2)a(b1)2a0,故f(x)存在两个零点设a0,由f(x)0得x1或xln(2a)若a,则ln(2a)1,故当x(1,)时,f(x)0,因此f(x)在(1,)内单调递增又当x1时,f(x)0,所以f(x)不存在两个零点若a0,则a的取值范围是() 【导学号:07804108】a(2,)b(,2)c(1,)d(,1)bf(x)3ax26x,当a3时,f(x)9x26x3x(3x2),则当x(,0)时,f(x)0;x时,f(x)0,注意f(0)1,f0,则f(x)的大致图象如图(1)所示图(1)不符合题意,排除a、c.当a时,f(x)4x26x2x(2x3),则当x时,f(x)0,x(0,)时,f(x)0,注意f(0)1,f,则f(x)的大致图象如图(2)所示图(2)不符合题意,排除d.3.(2017全国卷)已知函数f(x)ae2x(a2)exx.(1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 解(分类讨论思想)(1)f(x)的定义域为(,),f(x)2ae2x(a2)ex1(aex1)(2ex1)()若a0,则f(x)0,则由f(x)0得xln a.当x(,ln a)时,f(x)0.所以f(x)在(,ln a)单调递减,在(ln a,)单调递增(2)()若a0,由(1)知,f(x)至多有一个零点()若a0,由(1)知,当xln a时,f(x)取得最小值,最小值为f(ln a)1ln a.当a1时,由于f(ln a)0,故f(x)只有一个零点;当a(1,)时,由于1ln a0,即f(ln a)0,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前列腺增生围术期护理
- 骨科手术的一般术后护理
- 江苏省南京市秦淮区2026届九年级化学第一学期期中监测模拟试题含解析
- 家庭医生分级政策解读
- 非煤矿山机电安全培训
- 浙江省绍兴市越城区袍江中学2026届九上化学期中学业水平测试模拟试题含解析
- 2026届北京六十六中学九年级英语第一学期期末监测模拟试题含解析
- 化疗中药应用指南解读
- 2026届河北省石家庄市正定县英语九上期末经典试题含解析
- 2026届4月山东省莒县英语九年级第一学期期末学业质量监测模拟试题含解析
- GB 23466-2025听力防护装备的选择、使用和维护
- 人教PEP版(2024)四年级上册英语-Unit 3 Places we live in 单元整体教学设计(共6课时)
- 华为信息安全管理培训课件
- 贵阳市殡仪服务中心招聘考试真题2024
- 重庆市危险化学品企业变更管理实施指南(试行)解读2025.7.25
- 煤改电工程施工质量监控方案和措施
- 布病的护理教学课件
- (2025年标准)预售小麦协议书
- 2025年院感测试题及答案
- 公司培训防诈骗知识宣传课件
- 2025年全国《质量知识竞赛》题库及答案
评论
0/150
提交评论