高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 10.8 n次独立重复试验与二项分布课后作业 理.doc_第1页
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 10.8 n次独立重复试验与二项分布课后作业 理.doc_第2页
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 10.8 n次独立重复试验与二项分布课后作业 理.doc_第3页
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 10.8 n次独立重复试验与二项分布课后作业 理.doc_第4页
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 10.8 n次独立重复试验与二项分布课后作业 理.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.8n次独立重复试验与二项分布重点保分 两级优选练a级一、选择题1(2018广西柳州模拟)把一枚硬币任意抛掷三次,事件a“至少有一次出现反面”,事件b“恰有一次出现正面”,则p(b|a)()a. b. c. d.答案a解析依题意得p(a)1,p(ab),因此p(b|a),故选a.2(2018厦门模拟)甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以31的比分获胜的概率为()a. b. c. d.答案a解析第四局甲第三次获胜,并且前三局甲获胜两次,所以所求的概率为pc2.故选a.3(2017山西一模)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为()a. b. c. d.答案b解析由题意,甲获得冠军的概率为,其中比赛进行了3局的概率为,所求概率为,故选b.4口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列an:an如果sn为数列an的前n项和,那么s73的概率为()ac25 bc25cc25 dc25答案b解析s73说明摸取2个红球,5个白球,故s73的概率为c25,故选b.5(2017天津模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了x次球,则p(x12)等于()ac102 bc102cc22 dc102答案d解析“x12”表示第12次取到红球,且前11次有9次取到红球,2次取到白球,因此p(x12)c92c102.故选d.6如果b,那么使p(k)取最大值的k值为()a3 b4 c5 d3或4答案d解析采取特殊值法p(3)c312,p(4)c411,p(5)c510,从而易知p(3)p(4)p(5)故选d.7如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()a. b. c. d.答案a解析设a表示“第一个圆盘的指针落在奇数所在的区域”,则p(a),b表示“第二个圆盘的指针落在奇数所在的区域”,则p(b).则p(ab)p(a)p(b).故选a.8设随机变量xb(2,p),yb(4,p),若p(x1),则p(y2)的值为()a. b. c. d.答案b解析p(x1)p(x1)p(x2)cp(1p)cp2,解得p.故p(y2)1p(y0)p(y1)1c4c3.故选b.9某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为x,则x的数学期望为()a100 b200 c300 d400答案b解析1000粒种子每粒不发芽的概率为0.1,不发芽的种子数b(1000,0.1)1000粒种子中不发芽的种子数的期望e()10000.1100粒又每粒不发芽的种子需补种2粒,需补种的种子数的期望e(x)2100200粒故选b.10位于坐标原点的一个质点m按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是,质点m移动五次后位于点(2,3)的概率是()a.5 bc5cc3 dcc5答案b解析如图,由题可知质点m必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率所求概率为pc23c5.故选b.二、填空题11(2017眉山期末)已知xb,当p(xk)(kn,0k8)取得最大值时,k的值是_答案4解析xb,p(xk)ck8kc8,当p(xk)(kn,0k8)取得最大值时只有c是一个变量,根据组合数的性质得到当k4时,概率取得最大值12(2017安顺期末)甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为_答案解析每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为p(a),乙中奖的概率为p(b),两人都中奖的概率为p(ab),则p(a)0.6,p(b)0.6,两人都中奖的概率为p(ab)0.4,则已知甲中奖的前提下乙也中奖的概率为p(b|a).13(2017南昌期末)位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则电子兔移动五次后位于点(1,0)的概率是_答案解析根据题意,质点p移动五次后位于点(1,0),其中向左移动3次,向右移动2次;其中向左平移的3次有c种情况,剩下的2次向右平移;则其概率为c23.14先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x,y,记事件a为“xy为偶数”,事件b为“x,y中有偶数且xy”,则概率p(b|a)_.答案解析根据题意,事件a为“xy为偶数”,则x,y两个数均为奇数或偶数,共有23318个基本事件事件a发生的概率为p(a),而a,b同时发生,基本事件有“24”“26”“42”“46”“62”“64”,一共有6个基本事件,事件a,b同时发生的概率为p(ab),p(b|a).b级三、解答题15(2017河北“五个一名校联盟”二模)空气质量指数(air quality index,简称aqi)是定量描述空气质量状况的指数,空气质量按照aqi大小分为六级:050为优;51100为良;101150为轻度污染;151200为中度污染;201300为重度污染;300以上为严重污染一环保人士记录去年某地六月10天的aqi的茎叶图如图(1)利用该样本估计该地六月空气质量为优良(aqi100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为,求的分布列和数学期望解(1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,该样本中空气质量为优良的频率为,从而估计该地六月空气质量为优良的天数为3018.(2)由(1)估计某天空气质量为优良的概率为,的所有可能取值为0,1,2,3,且b.p(0)3,p(1)c2,p(2)c2,p(3)3,的分布列为0123pe()31.8.16党的十九大报告提出:要提高人民健康水平,改革和完善食品、药品安全监管体制为加大监督力度,某市工商部门对本市的甲、乙两家小型食品加工厂进行了突击抽查,从两个厂家生产的产品中分别随机抽取10件样品,测量该产品中某种微量元素的含量(单位:毫克),所得测量数据如图食品安全法规定:优等品中的此种微量元素含量不小于15毫克(1)从甲食品加工厂抽出的上述10件样品中随机抽取4件,求抽到的4件产品优等品的件数的分布列;(2)若从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,求甲、乙食品加工厂抽到的优等品的件数恰好相同的概率解(1)由茎叶图,从甲食品加工厂抽出的10件样品中,优等品有8件,非优等品有2件,故抽取的4件样品中至少有2件优等品,的可能取值为2,3,4.p(2),p(3),p(4).的分布列为23 4 p(2)甲食品加工厂抽取的样品中优等品有8件,乙食品加工厂抽取的样品中优等品有7件故从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,则优等品的件数相同时,可能为1件、2件或3件优等品同为3件的概率p1;优等品同为2件时的概率p2;优等品同为1件时的概率p3.故所求事件的概率为pp1p2p3.17(2018郑州质检)2017年3月15日下午,谷歌围棋人工智能alphago与韩国棋手李世石进行最后一轮较量,alphago获得本场比赛胜利,最终人机大战总比分定格在14.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查根据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图所示,将日均学习围棋时间不低于40分钟的学生称为“围棋迷”(1)根据已知条件完成下面的列联表,并据此资料判断是否有95%的把握认为“围棋迷”与性别有关?非围棋迷围棋迷合计男女1055合计(2)将上述调查所得到的频率视为概率现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为x.若每次抽取的结果是相互独立的,求x的分布列,期望e(x)和方差d(x)附:k2,其中nabcd.p(k2k0)0.050.01k03.8416.635解(1)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而22列联表如下:非围棋迷围棋迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得k23.030,因为3.0303.841,所以没有95%的把握认为“围棋迷”与性别有关(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区学生中抽取一名“围棋迷”的概率为.由题意知,xb,从而x的分布列为x0123pe(x)3,d(x)3.18(2018湖南十三校联考)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论