毕业论文.doc

MP3电池充电器插座的塑料注射模具的设计-注塑模具【20张CAD图纸和文档所见所得】【注塑模具JA系列】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共44页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:36009152    类型:共享资源    大小:3.31MB    格式:ZIP    上传时间:2019-12-31 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
20张CAD图纸和文档所见所得 注塑模具JA系列 MP3 电池充电器 插座 塑料 注射 模具 设计 注塑 20 CAD 图纸 文档 所得 JA 系列
资源描述:

【温馨提示】====【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======【3】特价促销,,拼团购买,,均有不同程度的打折优惠,,详情可咨询QQ:1304139763 或者 414951605======【4】 题目最后的备注【JA系列】为店主整理分类的代号,与课题内容无关,请忽视

内容简介:
材料加工技术杂志187188(2007)690693自适应电动温度调节系统注射成型的模具Nardin, B. a, B. Zagar a, came, came, A. Glojek a, D. Kri, AJ BZTECOS、工具和模具开发中心的斯洛文尼亚,Kidrieva Cesta, 3000 Sloveniac Celje b教员的电气工程,斯洛文尼亚卢布尔雅娜摘要 在模具的开发和生产过程中有一基本问题就是是否能够对注塑模具的温度条件进行控制。精确的研究在模具热力学过程表明,换热是可以操纵热量的手段。这样的系统升级传统冷却系统在模具或可以是一个独立的应用程序内部热操作。在本文中,作者将目前的研究项目的结果,这是在三个阶段,其结果是在A686 2006专利实施专利。测试阶段,原型阶段和产业化阶段将出现。该项目的主要结果是总的和快速在周期时间和整体影响重点变形的塑料产品质量在线的模具温度调节控制。提出了应用程序可以提供一个里程碑,模具温度和产品质量控制的注射成型过程中的领域。2006 Elsevier B.V.保留所有权利。关键词:注射成型;模具冷却热电模块;数值模拟;1.介绍,定义的问题开发技术的冷却模具通过热电的(TEM)意味着推导的工业实践和存在的问题,即在设计、工具制造和开发工具。目前的冷却技术有技术的局限性。其局限性的位置及提前预测与有限元分析(FEA)仿真包但不是完全可以避免的。结果一个多元化国家的最先进的分析显示,所有现有的冷却系统不提供可控的传热能力足以符合要求的工艺窗口当前聚合物加工技术。聚合物加工是当今有限(在任期缩短生产周期时间内,降低成本)只与热容操作功能。其他生产优化功能已经驱动机械和聚合物加工的局限性3。1.1 热过程中注塑塑料加工塑料的处理是基于传热塑胶材料和模腔之间。在计算传热应该考虑两个主要事实:首先是所有能源使用基于热力学定律的第一定律节能1,第二是速度的传热。在传热分析的基本任务是随时间和温度计算其分布在研究系统。最后取决于速度之间的热传导的系统和环境和速度的传热系统内部。基于传热可以作为热传导、对流和辐射1。1.2冷却时间完成注射模塑过程周期由模具闭合阶段,注入融化成腔,包装压力相位补偿收缩效应、冷却阶段,开模阶段和部分排出期。在大多数情况下,最长时间的上述所有阶段是冷却时间。冷却时间在注射模塑过程被定义为时间需要冷却塑料零件到弹射温度1。 图1 模具温度变化在一个周期的 2 一个冷却过程的主要目的是降低额外冷却时间,在理论上是不必要的;在实践中,它延伸从45到67%的整个周期时间的1,4。 从文学与实验1,4,它可以看到,模具温度影响极大,因此脱模时间冷却时间(成本)。 注射成型过程是一个循环过程,模具温度变化见图1,温度变化从平均价值通过整体周期时间。2.塑料注射模具冷却技术因为它已经描述,已经有几种不同的技术,让用户来冷却模具5。最传统的方法是用钻井技术,即生产模具的洞。通过这些孔(coolinglines),冷却介质流动,消除生成和积累的热量从模具1,2。它也是非常方便的在不同的材料建造,不同的热导率,目的是提高控制模具温度条件。这样的方法是所谓的被动方法对模具温度控制。 这个具有挑战性的任务是使一个活跃的系统,它可以改变热条件,对于所需的方面,比如产品质量或周期时间。一个这样的方法是集成热电气模块(TEM),它可以改变热条件期望的性质,对于模具。用这样的方法,一个可以控制传热与时间和空间变量,什么手段,温度可以调节整个注塑周期,独立于位置的模具。热控制是通过控制单元,输入变量是收到的人工输入或输入从注塑仿真。与输出值,控制单元模块行为监控TEM。2.1 热电模块(TEM)为需要的热操作,TEM模块集成到模具。热量与电之间的交互变量对于换热是基于珀尔帖效应。珀尔帖效应的现象是众所周知的,但它是直到现在从未用于注塑应用程序。TEM模块(见图2)是一个设备由妥善安排双P和N型半导体,放置两个陶瓷板之间形成热与冷热电冷却器网站。权力的传热可以容易控制通过的大小和极性的电流提供。 图2 TEM框图2.2 申请模具冷却应用程序的主要想法是插入到墙壁的TEM模块模腔作为主要传热单元。这些基本的装配中可以看到图3。二次传热是通过常规流体冷却系统实现,允许热流入与流出从模腔热力学系统。 图3 TEM冷却组件结构设备呈现在图。3包括热电模块(一个),使主要传热从或温度可控表面模具腔(B)。二次传热是通过冷却通道启用(C),提供恒温条件在模具。热电模块(一)操作作为热泵和这样操纵与热派生或者从模具由流体冷却系统(C)。系统二次加热与冷却通道操作作为热交换器。减少热容的可控区域保温(D)是安装在模腔(F)和模具结构板(E)。 图4 温度的检测与调节结构 整个应用程序包括TEM模块,一个温度传感器和电子装置控制系统的完整。该系统被描述在图4和包括一个输入单元(输入界面)和一个供应单位(单位为电子和电力电子供应h桥单元)。输入和供应单位与温度传感器回路信息附在一个控制单元,作为执行单元试图强加预定义的温带/时间/位置关系。使用珀尔帖效应,单位可以用于加热或冷却的目的。二级除热是通过流体冷却媒体实现视为换热器,如图4。这单位是根据目前的冷却技术和作为一个水槽或源的热。这允许完全控制过程从温度、时间和位置通过整个周期。此外,它允许不同的温度/时间/位置概要文件在周期也为起点和终点的过程。描述技术可用于各种工业和研究目的,精确的温度/时间/位置控制是必需的。 本文所提出的系统在无花果。3和4的比较分析,从理论以及实践的观点。分析了理论方面通过有限元模拟,而实用的开发和实现的原型到实际应用测试。3.有限元分析模具冷却当前的发展对注塑模具设计包括几个阶段3。其中还设计和优化一个冷却系统。这是现在由模拟使用定制的有限元软件包(模塑仿真分析4),可以预测冷却系统功能,特别是其影响塑料。与这种模拟,模具设计师收集信息在产品流变学和变形由于收缩作为魔法作为生产时间周期信息。这个热信息通常是准确的,但仍然可以不可靠的情况下的流变材料信息不足。高质量的输入为热调节TEM,需要得到一个图片关于温度分布在周期时间和整个模具表面和整个模具厚度。因此,不同的过程模拟是必要的。图5 在有限元环境原型截面3.1物理模型,有限元分析实现有限元分析为开发项目做是由于作者长期经历这样的包4和可能性来执行不同的测试在虚拟环境。整个冷却系统设计了原型在有限元环境(见图5)通过温度分布在每个部分的原型和联系人之间的冷却系统进行了探讨。为模拟物理特性在一个样机,仿真模型构建了利用COMSOL软件多重物理量。结果是一个有限元模型与真实的原型(见图7),通过它可以比较和评估结果。探讨了有限元模型在术语的传热物理考虑两个热源:水换热器与流体物理和热电模块与传热物理(只有传导和对流辐射进行分析,忽略了由于低相对温度,因此低影响温度)。有限元分析的边界条件设定目标达到相同的工作条件,在实际测试。周围的空气和水换热器被设定在稳定的温度20C。图6 根据有限元分析的温度分布 有限元分析的结果中可以看到图6,即通过模拟温度分布区域图5所示。图6表示稳态分析,非常准确的原型测试相比。为了模拟时域响应进行了瞬态仿真也,显示非常积极的结果对于未来的工作。才能够实现一个温差200C在很短的时间(5 s),可能会导致一些问题在TEM结构。这些问题就都解决了几个解决方案,比如足够的安装,选择合适的材料和应用智能化电子透射监管。3.2实验室测试因为它已经描述,原型制作和测试(见图7)。结果显示,设置的假设被证实。用TEM模块,可以控制温度分布的不同部分的模具在整个周期的时间。与实验室测试,这是证明了的,可以是实际的热操纵监管与TEM模块。测试是在实验室,模拟真实的工业环境,注塑成型机克劳斯Maffei公里60 C、温度传感器、红外摄像机和原型TEM模块。反应温度在1.8 s多样形式+ 5 80C,代表一个广阔的区域内的热量控制在注塑周期。图7 在实际环境中的原型4.结论 利用热电模块与它直接连接输入和输出之间的关系是一个里程碑冷却应用程序。它的引入对注塑模具与它的问题和问题处理的冷却结构精密,高质量的塑料部分代表了很高的期望。作者是假设使用珀尔帖效应可用于温度控制在模具注塑。的方法有基于仿真的工作和真正的生产实验室设备证明,假设被证实。仿真结果显示,一个广泛的领域可能的应用TEM模块在注塑过程。与功能的温度曲线提到跨周期时间,注射模塑过程可以完全控制。工业的问题,如均匀冷却问题类表面及其后果的塑料件外观可以解决。填充墙的问题可以解决薄长与过热的一些表面在注射时间。此外,这样的应用程序控制流变特性的塑料材料可以获得。用适当的热调节TEM是可能甚至控制熔体流动的模具,在充填阶段的模腔。这是做了适当的温度分布的模具(更高的温度对薄壁零件的产品)。应用TEM模块,可以显著减少周期时间在注塑过程。时间的限制可能减少在于框架的10 - 25%的额外的冷却时间,在1.2节描述。应用TEM模块可以积极控制产品的翘曲和调节量的产品翘曲的方式来达到所需的产品公差。提出了TEM模块冷却应用注射模塑过程是一个优先的选择注意的专利,属于TECOS举行。参考文献1 I. Cati , Izmjena topline u kalupima za injekcijsko preanje plastomera,sDrutvo plasti ara i gumaraca, Zagreb, 1985.sc2 I. Cati , F. Johannaber, Injekcijsko preanje polimera i ostalih materiala,s Drutvo za plastiku i gumu, Biblioteka polimerstvo, Zagreb, 2004.s3 B. Nardin, K. Kuzman, Z. Kampu, Injection moulding simulation results as an input to the injection moulding process, in: AFDM 2002: The Second International Conference on Advanced Forming and Die Manufacturing Technology, Pusan, Korea, 2002.4 TECOS, Slovenian Tool and Die Development Centre, Moldow Simulation Projects 19962006.5 S.C. Chen, et al., Rapid mold surface heating/cooling using electromagnetic induction technology: ANTEC 2004, Conference CD-ROM, Chicago,Illinois, 1620 May, 2004.Journal of Materials Processing Technology 187188 (2007) 690693Adaptive system for electrically driven thermoregulation of moulds for injection moulding B. Nardin a, , B. Zagar a, , A. Glojek a , D. Kri aj bzaTECOS, Tool and Die Development Centre of Slovenia, Kidri eva Cesta 25, 3000 Celje, Sloveniac b Faculty of Electrical Engineering, Ljubljana, SloveniaAbstract One of the basic problems in the development and production process of moulds for injection moulding is the control of temperature con-ditions in the mould. Precise study of thermodynamic processes in moulds showed, that heat exchange can be manipulated by thermoelectricalmeans. Such system upgrades conventional cooling systems within the mould or can be a stand alone application for heat manipulation withinit. In the paper, the authors will present results of the research project, which was carried out in three phases and its results are patented in A6862006patent. The testing stage, the prototype stage and the industrialization phase will be presented. The main results of the project were total and rapidon-line thermoregulation of the mould over the cycle time and overall inuence on quality of plastic product with emphasis on deformationcontrol. Presented application can present a milestone in the eld of mould temperature and product quality control during the injection moulding process. 2006 Elsevier B.V. All rights reserved.Keywords: Injection moulding; Mould cooling; Thermoelectric modules; FEM simulations1. Introduction, denition of problem Development of technology of cooling moulds via thermo-electrical (TEM) means derives out of the industrial praxis andproblems, i.e. at design, tool making and exploitation of tools.Current cooling technologies have technological limitations.Their limitations can be located and predicted in advance withnite element analyses (FEA) simulation packages but not com-pletely avoided. Results of a diverse state of the art analysesrevealed that all existing cooling systems do not provide con-trollable heat transfer capabilities adequate to t into demand-ing technological windows of current polymer processingtechnologies. Polymer processing is nowadays limited (in term of short-ening the production cycle time and within that reducing costs)only with heat capacity manipulation capabilities. Other produc-tion optimization capabilities are already driven to mechanicaland polymer processing limitations 3.1.1. Thermal processes in injection moulding plasticprocessing Plastic processing is based on heat transfer between plasticmaterial and mould cavity. Within calculation of heat transferone should consider two major facts: rst is all used energywhich is based on rst law of thermodynamicslaw of energyconservation 1, second is velocity of heat transfer. Basic taskat heat transfer analyses is temperature calculation over timeand its distribution inside studied system. That last depends onvelocity of heat transfer between the system and surroundingsand velocity of heat transfer inside the system. Heat transfer canbe based as heat conduction, convection and radiation 1.1.2. Cooling time Complete injection moulding process cycle comprises ofmould closing phase, injection of melt into cavity, packing pres-sure phase for compensating shrinkage effect, cooling phase,mould opening phase and part ejection phase. In most cases, thelongest time of all phases described above is cooling time. Cooling time in injection moulding process is dened astime needed to cool down the plastic part down to ejectiontemperature 1.Corresponding authors. Tel.: +386 3 490920; fax: +386 3 4264612.E-mail address: Blaz.Nardintecos.si (B. Nardin).0924-0136/$ see front matter 2006 Elsevier B.V. All rights reserved.doi:10.1016/j.jmatprotec.2006.11.052B. Nardin et al. / Journal of Materials Processing Technology 187188 (2007) 690693691Fig. 1. Mould temperature variation across one cycle 2.Fig. 2. TEM block diagram. The main aim of a cooling process is to lower additionalcooling time which is theoretically needless; in praxis, it extendsfrom 45 up to 67% of the whole cycle time 1,4. From literature and experiments 1,4, it can be seen, that themould temperature has enormous inuence on the ejection timeand therefore the cooling time (costs). Injection moulding process is a cyclic process where mouldtemperature varies as shown in Fig. 1 where temperature variesfrom average value through whole cycle time.2. Cooling technology for plastic injection moulds As it was already described, there are already several differ-ent technologies, enabling the users to cool the moulds 5. Themost conventional is the method with the drilling technology,i.e. producing holes in the mould. Through these holes (coolinglines), the cooling media is owing, removing the generated andaccumulated heat from the mould 1,2. It is also very convenientto build in different materials, with different thermal conductiv-ity with the aim to enhance control over temperature conditionsin the mould. Such approaches are so called passive approachestowards the mould temperature control. The challenging task is to make an active system, which canalter the thermal conditions, regarding to the desired aspects,like product quality or cycles time. One of such approaches isintegrating thermal electrical modules (TEM), which can alterthe thermal conditions in the mould, regarding the desired prop-erties. With such approach, the one can control the heat transferwith the time and space variable, what means, that the temper-ature can be regulated throughout the injection moulding cycle,independent of the position in the mould. The heat control isdone by the control unit, where the input variables are receivedfrom the manual input or the input from the injection mouldingsimulation. With the output values, the control unit monitors theTEM module behaviour.2.1. Thermoelectric modules (TEM) For the needs of the thermal manipulation, the TEM modulewas integrated into mould. Interaction between the heat and elec-trical variables for heat exchange is based on the Peltier effect.The phenomenon of Peltier effect is well known, but it was untilnow never used in the injection moulding applications. TEMmodule (see Fig. 2) is a device composed of properly arrangedpairs of P and N type semiconductors that are positioned betweentwo ceramic plates forming the hot and the cold thermoelectriccooler sites. Power of a heat transfer can be easily controlledthrough the magnitude and the polarity of the supplied electriccurrent.2.2. Application for mould cooling The main idea of the application is inserting TEM moduleinto walls of the mould cavity serving as a primary heat transferunit. Such basic assembly can be seen in Fig. 3. Secondary heattransfer is realized via conventional uid cooling system thatallows heat ows in and out from mould cavity thermodynamicsystem. Device presented in Fig. 3 comprises of thermoelectricmodules (A) that enable primarily heat transfer from or to tem-perature controllable surface of mould cavity (B). Secondaryheat transfer is enabled via cooling channels (C) that deliverconstant temperature conditions inside the mould. Thermoelec-tric modules (A) operate as heat pump and as such manipulatewith heat derived to or from the mould by uid cooling sys-tem (C). System for secondary heat manipulation with coolingchannels work as heat exchanger. To reduce heat capacity ofcontrollable area thermal insulation (D) is installed between themould cavity (F) and the mould structure plates (E).Fig. 3. Structure of TEM cooling assembly.692B. Nardin et al. / Journal of Materials Processing Technology 187188 (2007) 690693Fig. 4. Structure for temperature detection and regulation. The whole application consists of TEM modules, a temper-ature sensor and an electronic unit that controls the completesystem. The system is described in Fig. 4 and comprises of aninput unit (input interface) and a supply unit (unit for electronicand power electronic supplyH bridge unit). The input and supply units with the temperature sensor loopinformation are attached to a control unit that acts as an exe-cution unit trying to impose predened temperate/time/positionrelations. Using the Peltier effect, the unit can be used for heatingor cooling purposes. The secondary heat removal is realized via uid coolingmedia seen as heat exchanger in Fig. 4. That unit is based oncurrent cooling technologies and serves as a sink or a sourceof a heat. This enables complete control of processes in termsof temperature, time and position through the whole cycle.Furthermore, it allows various temperature/time/position pro-les within the cycle also for starting and ending procedures.Described technology can be used for various industrial andresearch purposes where precise temperature/time/position con-trol is required. The presented systems in Figs. 3 and 4 were analysed from thetheoretical, as well as the practical point of view. The theoreticalaspect was analysed by the FEM simulations, while the practicalone by the development and the implementation of the prototypeinto real application testing.3. FEM analysis of mould cooling Current development of designing moulds for injectionmoulding comprises of several phases 3. Among them is alsodesign and optimization of a cooling system. This is nowa-days performed by simulations using customized FEM packages(Moldow 4) that can predict cooling system capabilities andespecially its inuence on plastic. With such simulations, moulddesigners gather information on product rheology and deforma-tion due to shrinkage as ell as production time cycle information. This thermal information is usually accurate but can still beunreliable in cases of insufcient rheological material informa-tion. For the high quality input for the thermal regulation ofTEM, it is needed to get a picture about the temperature distri-bution during the cycle time and throughout the mould surfaceand throughout the mould thickness. Therefore, different processsimulations are needed.Fig. 5. Cross-section of a prototype in FEM environment.3.1. Physical model, FEM analysis Implementation of FEM analyses into development projectwas done due to authors long experiences with such packages4 and possibility to perform different test in the virtual envi-ronment. Whole prototype cooling system was designed in FEMenvironment (see Fig. 5) through which temperature distributionin each part of prototype cooling system and contacts betweenthem were explored. For simulating physical properties inside adeveloped prototype, a simulation model was constructed usingCOMSOL Multiphysics software. Result was a FEM modelidentical to real prototype (see Fig. 7) through which it waspossible to compare and evaluate results. FEM model was explored in term of heat transfer physicstaking into account two heat sources: a water exchanger withuid physics and a thermoelectric module with heat transferphysics (only conduction and convection was analysed, radiationwas ignored due to low relative temperature and therefore lowimpact on temperature). Boundary conditions for FEM analyses were set with thegoal to achieve identical working conditions as in real test-ing. Surrounding air and the water exchanger were set at stabletemperature of 20 C.Fig. 6. Temperature distribution according to FEM analysis.B. Nardin et al. / Journal of Materials Processing Technology 187188 (2007) 690693693Fig. 7. Prototype in real environment. Results of the FEM analysis can be seen in Fig. 6, i.e. temper-ature distribution through the simulation area shown in Fig. 5.Fig. 6 represents steady state analysis which was very accuratein comparison to prototype tests. In order to simulate the timeresponse also the transient simulation was performed, showingvery positive results for future work. It was possible to achieve atemperature difference of 200 C in a short period of time (5 s),what could cause several problems in the TEM structure. Thoseproblems were solved by several solutions, such as adequatemounting, choosing appropriate TEM material and applyingintelligent electronic regulation.3.2. Laboratory testing As it was already described, the prototype was produced andtested (see Fig. 7). The results are showing, that the set assump-tions were conrmed. With the TEM module it is possible tocontrol the temperature distribution on different parts of themould throughout the cycle time. With the laboratory tests, itwas proven, that the heat manipulation can be practically regu-lated with TEM modules. The test were made in the laboratory,simulating the real industrial environment, with the injectionmoulding machine Krauss Maffei KM 60 C, temperature sen-sors, infrared cameras and the prototype TEM modules. Thetemperature response in 1.8 s varied form +5 up to 80 C, whatrepresents a wide area for the heat control within the injectionmoulding cycle.4. Conclusions Use of thermoelectric module with its straightforward con-nection between the input and output relations represents amilestone in cooling applications. Its introduction into mouldsfor injection moulding with its problematic cooling constructionand problematic processing of precise and high quality plasticparts represents high expectations. The authors were assuming that the use of the Peltier effectcan be used for the temperature control in moulds for injectionmoulding. With the approach based on the simulation work andthe real production of laboratory equipment proved, the assump-tions were conrmed. Simulation results showed a wide area ofpossible application of TEM module in the injection mouldingprocess. With mentioned functionality of a temperature prole acrosscycle time
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:MP3电池充电器插座的塑料注射模具的设计-注塑模具【20张CAD图纸和文档所见所得】【注塑模具JA系列】
链接地址:https://www.renrendoc.com/p-36009152.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!