




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-动态几何变化问题()以运动的观点探究几何图形部分变化规律的问题,称之为动态几何问题.动态几何问题充分体现了数学中的“变”与“不变”的和谐统一,其特点是图形中的某些元素(点、线段、角等)或某部分几何图形按一定的规律运动变化,从而又引起了其它一些元素的数量、位置关系、图形重叠部分的面积或某部分图形的形状等发生变化,但是图形的一些元素数量和关系在运动变化的过程中却互相依存,具有一定的规律可寻.1.了解动态几何问题涉及的常见情况;2.掌握讲义中涉及的动态几何变换的思考策略与解题方法;3.数形结合、空间想象能力和综合分析能力的训练。本部分建议时长5分钟“知识结构”这一部分的教学,老师在教学时刻根据每种情况进行简单例举,也可让学生进行回顾例举考点一、建立动点问题的函数解析式动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。二、应用比例式建立函数解析式。三、应用求图形面积的方法建立函数关系式。考点二、动态几何型压轴题动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、 以动态几何为主线的压轴题。(一)点动问题。 (二)线动问题。 (三)面动问题。二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。2、动手实践,操作确认。3、建立联系,计算说明。三、专题二总结,本大类习题的共性:1代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数2以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。考点三、双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 1 以双动点为载体,探求函数图象问题。2 以双动点为载体,探求结论开放性问题。3 以双动点为载体,探求存在性问题。4 以双动点为载体,探求函数最值问题。这类试题信息量大,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。考点四、函数中因动点产生的相似三角形问题 考点五、以圆为载体的动点问题动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。本部分建议时长25分钟1、建立函数型、1.()如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BCCD方向运动,当P运动到B点时,P、Q两点同时停止运动设P点运动的时间为t,APQ的面积为S,则S与t的函数关系的图象是( ) A B CD【分析】动点Q从B点出发,以每秒2个单位长度的速度沿BCCD方向运动, 点Q运动到点C的时间为42=2秒。 由题意得,当0t2时,即点P在AB上,点Q在BC上,AP=t,BQ=2t,为开口向上的抛物线的一部分。当2t4时,即点P在AB上,点Q在DC上,AP=t,AP上的高为4,为直线(一次函数)的一部分。观察所给图象,符合条件的为选项D。故选D。答案:D2.()如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿ABC和ADC的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0x8)之间函数关系可以用图象表示为( )ABCD【分析】0x4时,y=SABDSAPQ=44xx=x2+8,4x8时,y=SBCDSCPQ=44(8x)(8x)=(8x)2+8,y与x之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,只有B选项图象符合。故选B。答案:B 3. ()直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;xAOQPBy(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标解:(1)A(8,0)B(0,6)(2)点由到的时间是(秒)点的速度是(单位/秒)当在线段上运动(或0)时, 当在线段上运动(或)时,,如图,作于点,由,得,(3) 1、 解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。2、 解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.3、动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系1. ()如图为反比例函数在第一象限的图象,点A为此图象上的一动点,过点A分别作ABx轴和ACy轴,垂足分别为B,C则四边形OBAC周长的最小值为( )A 4 B 3 C 2 D 12.()如图,在梯形ABCD中,ADBC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知PAD的面积s(单位:)与点P移动的时间t(单位:s)的函数关系式如图所示,则点P从开始移动到停止移动一共用了 秒(结果保留根号).3. ()如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BEEDDC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒设P、Q同发t秒时,BPQ的面积为ycm2已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:AD=BE=5;cosABE=;当0t5时,;当秒时,ABEQBP;其中正确的结论是 (填序号)4. ()在RtABC中,C=90,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)当t = 2时,AP = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;ACBPQED图16(4)当DE经过点C时,请直接写出t的值 答案:1.A 2. 4 3.ACBPQED图44.解:(1)1,; (2)作QFAC于点F,如图3, AQ = CP= t,由AQFABC, 得 ACBPQED图5AC(E)BPQD图6GAC(E)BPQD图7G,即(3)能 当DEQB时,如图4 DEPQ,PQQB,四边形QBED是直角梯形 此时AQP=90由APQABC,得,即 解得 如图5,当PQBC时,DEBC,四边形QBED是直角梯形此时APQ =90由AQPABC,得 ,即 解得(4)或点P由C向A运动,DE经过点C连接QC,作QGBC于点G,如图6,由,得,解得点P由A向C运动,DE经过点C,如图7,2、以圆为载体型、1. ()如图所示,已知A点从点(,)出发,以每秒个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且AOC=600,又以P(,)为圆心,PC为半径的圆恰好与OA所在直线相切,则t= .答案:2.()如图,C为O直径AB上一动点,过点C的直线交O于D,E两点,且ACD=45,DFAB于点F,EGAB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( ) ABCD答案: A3. ()如图,边长为6的正方形ABCD内部有一点P,BP=4,PBC=60,点Q为正方形边上一动点,且PBQ是等腰三角形,则符合条件的Q点有 个.【分析】如图,符合条件的Q点有5个。 当BP=BQ时,在AB,BC边上各有1点; 当BP=QP时,可由锐角三角函数求得点P到AB的距离为2,到CD的距离为4,到BC的距离为,到AD的距离为,故在BC,CD,DA边上各有1点; 当BQ=PQ时,BP的中垂线与AB,BC各交于1点,故在AB,BC边上各有1点。 又当Q在BC边上时,由于BPQ是等边三角形,故3点重合。 因此,符合条件的Q点有5个。答案:54. ()在平面直角坐标系中,已知二次函数的图象经过点和点,直线经过抛物线的顶点且与轴垂直,垂足为.(1) 求该二次函数的表达式;(2) 设抛物线上有一动点从点处出发沿抛物线向上运动,其纵坐标随时间)的变化规律为.现以线段为直径作.当点在起始位置点处时,试判断直线与的位置关系,并说明理由;在点运动的过程中,直线与是否始终保持这种位置关系? 请说明你的理由;若在点开始运动的同时,直线也向上平行移动,且垂足的纵坐标随时间的变化规律为,则当在什么范围内变化时,直线与相交? 此时,若直线被所截得的弦长为,试求的最大值.答案:解:(1)将点和点的坐标代入,得,解得。二次函数的表达式为。(2)当点在点处时,直线与相切。理由如下:点,圆心的坐标为,的半径为。又抛物线的顶点坐标为(0,1),即直线上所有点的巫坐标均为1,从而圆心到直线的距离为。直线与相切。 在点运动的过程中,直线与始终保持相切的位置关系。理由如下:设点,则圆心的坐标为,圆心到直线的距离为。又,。则的半径为。直线与始终相切。由知的半径为,又圆心的纵坐标为,直线上的点的纵坐标为,()当,即时,圆心到直线的距离为。则由,得,解得, 此时。()当,即时, 圆心到直线的距离为。则由,得,解得。此时。综上所述,当时,直线与相交。当时,圆心到直线的距离为,又半径为,。当时, 取得最大值为。1. 关于圆的动点问题要考虑圆的对称性;2. 建立函数模型解决动点问题是很好的突破口;3. 空间想象能力的培养注重平时的积累。本部分建议时长10分钟1. ()如图,O1和O2内切于A,O1的半径为3,O2的半径为2,点P为O1上的任一点(与点A不重合),直线PA交O2于点C,PB切O2于点B,则的值为( )(A) (B) (C) (D)2.()如图,菱形ABCD中,AB=2,A=120,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为( )A1 B C 2 D1OABlxy3. ()如图,已知直线l经过点A(1,0),与双曲线y(x0)交于点B(2,1)过点P(p,p1)(p1)作x轴的平行线分别交双曲线y(x0)和y(x0)于点M、N(1)求m的值和直线l的解析式;(2)若点P在直线y2上,求证:PMBPNA;(3)是否存在实数p,使得SAMN4SAMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由4. ()已知抛物线经过及原点(1)求抛物线的解析式(由一般式得抛物线的解析式为)(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成矩形是否存在点,使得与相似?若存在,求出点的坐标;若不存在,说明理由(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?答案:1.B 2.B3.解:(1)由点B(2,1)在y上,有2,即m2。 设直线l的解析式为,由点A(1,0),点B(2,1)在上,得 , ,解之,得 所求 直线l的解析式为 。 (2)点P(p,p1)在直线y2上,P在直线l上,是直线y2和l的交点,见图(1)。 根据条件得各点坐标为N(1,2),M(1,2),P(3,2)。 NP3(1)4,MP312,AP, BP 在PMB和PNA中,MPBNPA,。 PMBPNA。 (3)SAMN。下面分情况讨论: 当1p3时,延长MP交X轴于Q,见图(2)。设直线MP为则有 解得 则直线MP为 当y0时,x,即点Q的坐标为(,0)。 则, 由24有,解之,p3(不合,舍去),p。 当p3时,见图(1)SAMPSAMN。不合题意。 当p3时,延长PM交X轴于Q,见图(3)。 此时,SAMP大于情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林小故事题目及答案
- 乳腺疾病题目大全及答案
- 2023-2024学年河北省邢台市高二下学期期末测试数学试题(解析版)
- 2025届河南省焦作市高三三模语文试题(解析版)
- 2025届河北省沧州市运东五校高三二模语文试题(解析版)
- 2024-2025学年新疆吐鲁番市高二上学期期末考试语文试题(解析版)
- 华炬鼎环境科技宿迁有限公司环境检测室建设项目环评资料环境影响
- 磨床维修记录表格
- 餐厅厨师长岗位职责
- 自贡统计年鉴-2009-人民生活主要统计指标解释
- 九师联盟2024-2025学年高二下学期6月摸底联考语文试题(含答案)
- 非遗文化掐丝珐琅景泰蓝
- 2025年甘肃电投集团公司招聘笔试参考题库含答案解析
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 中外美术评析与欣赏智慧树知到期末考试答案章节答案2024年湖南大学
- 部编版四年级语文下册期末调研测试卷(江苏南京江宁区2021春真卷)
- 外国美术史PPT现实主义
- 固体火箭发动机制造工艺
- 手术室医院感染风险评估与采取措施
- 浮选柱对有色金属矿泥的浮选
- 脉冲震荡检测原理及意义
评论
0/150
提交评论