中考查缺补漏.doc_第1页
中考查缺补漏.doc_第2页
中考查缺补漏.doc_第3页
中考查缺补漏.doc_第4页
中考查缺补漏.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

v 选择填空难点讲解 填空题或选择题中都有可能出现的两类问题在这里一起说明:一是找规律的;二是新定义的l 规律与猜想 考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。例1 (2012沈阳)有一组多项式:a+b2,a2b4,a3+b6,a4b8,请观察它们的构成规律,用你发现的规律写出第10个多项式为 例2 (2012珠海)观察下列等式:12231=13221,13341=14331,23352=25332,34473=37443,62286=68226,以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:52 = 25; 396=693 (2)设这类等式左边两位数的十位数字为a,个位数字为b,且2a+b9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明 考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。例3 (2012重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第个图形一共有2个五角星,第个图形一共有8个五角星,第个图形一共有18个五角星,则第个图形中五角星的个数为()A50B64C68D72例4 (2012绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10cm,如图,第一棵树左边5cm处有一个路牌,则从此路牌起向右510m550m之间树与灯的排列顺序是()ABCD例5 (2012荆门)已知:顺次连接矩形各边的中点,得到一个菱形,如图;再顺次连接菱形各边的中点,得到一个新的矩形,如图;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图;如此反复操作下去,则第2012个图形中直角三角形的个数有()A8048个B4024个C2012个D1066个 考点三:猜想坐标变化例6 (2012德州)如图,在一单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,都是斜边在x轴上、斜边长分别为2,4,6,的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2012的坐标为 例7 (2012鸡西)如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2012的坐标为 考点四:猜想数量关系数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。在猜想这种问题时,通常也是根据题目给出的关系式进行类比,仿照猜想数式规律的方法解答。例8 (2012苏州)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上若正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3,则点A3到x轴的距离是()A BCD例9 (2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;设Pn1Dn2的中点为Dn1,第n次将纸片折叠,使点A与点Dn1重合,折痕与AD交于点Pn(n2),则AP6的长为()A BCD例10 (2012广州)如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n个半圆的面积为 (结果保留) 考点五:猜想变化情况随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。这种规律可以作为猜想的一个参考依据。例11 (2012常德)若图1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图2,再将图2中的每一段作类似变形,得到图3,按上述方法继续下去得到图4,则图4中的折线的总长度为()A2BCD例12 (2012河北)用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为 例13 (2012无锡)如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0)若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A、B、C、D、E、F中,会过点(45,2)的是点 例14 (2012绥化)长为20,宽为a的矩形纸片(10a20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止当n=3时,a的值为 考点六:猜想数字求和例16 (2012黄石)“数学王子”高斯从小就善于观察和思考在他读小学时就能在课堂上快速地计算出1+2+3+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令 S=1+2+3+98+99+100 S=100+99+98+3+2+1 +:有2S=(1+100)100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+(2n+1)=168,则n= l 新定义类 考点一:规律题型中的新概念例1 (2012永州)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差如2,4,6,8,10就是一个等差数列,它的公差为2如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列例如数列1,3,9,19,33,它的后一个数与前一个数的差组成的新数列是2,6,10,14,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,是一个二阶等差数列那么,请问二阶等差数列1,3,7,13,的第五个数应是 21 对应训练1 (2012自贡)若x是不等于1的实数,我们把 称为x的差倒数,如2的差倒数是 =-1,-1的差倒数为 = ,现已知x1=- ,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,依次类推,则x2012= 2.(2012丽水)小明用棋子摆放图形来研究数的规律图1中棋子围城三角形,其棵数3,6,9,12,称为三角形数类似地,图2中的4,8,12,16,称为正方形数下列数中既是三角形数又是正方形数的是()A2010B2012C2014D2016 考点二:运算题型中的新概念例 (2012菏泽)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,概念=ad-bc,上述记号就叫做2阶行列式若=8,则x= 2 对应训练1 (2012株洲)若(x1,y1)(x2,y2)=x1x2+y1y2,则(4,5)(6,8)= 2.(2012湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入 ,则输出的结果为()A5B6C7D83.(2012常德)规定用符号m表示一个实数m的整数部分,例如:=0,3.14=3按此规定的值为 考点三:开放题型中的新概念例:(2012台州)请你规定一种适合任意非零实数a,b的新运算“ab”,使得下列算式成立:12=21=3,(-3)(-4)=(-4)(-3)=- ,(-3)5=5(-3)=- ,你规定的新运算ab= (用a,b的一个代数式表示) 考点四:阅读材料题型中的新概念例5 (2012六盘水)概念:f(a,b)=(b,a),g(m,n)=(-m,-n)例如f(2,3)=(3,2),g(-1,-4)=(1,4)则gf(-5,6)等于()A(-6,5)B(-5,-6)C(6,-5)D(-5,6) 对应训练1(2012钦州)在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:f(x,y)=(y,x)如f(2,3)=(3,2);g(x,y)=(-x,-y),如g(2,3)=(-2,-3)按照以上变换有:f(g(2,3)=f(-2,-3)=(-3,-2),那么g(f(-6,7)等于()A(7,6)B(7,-6)C(-7,6)D(-7,-6)2.(2012随州)概念:平面内的直线与相交于点O,对于该平面内任意一点M,点M到直线、的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是()A2B1C4D33.(2012荆门)新概念:a,b为一次函数y=ax+b(a0,a,b为实数)的“关联数”若“关联数”1,m-2的一次函数是正比例函数,则关于x的方程 +=1的解为 x=34.(2012自贡)如图,ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 4v 压轴题1、(观澜二模)如图所示,抛物线y=ax2+c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止(1)求抛物线的解析式和点C的坐标;(2)在点M、N运动过程中,若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;若直线MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以OP为直径的圆经过点A?若存在,请求出t值;若不存在,请说明理由2、(海湾二模)如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由3、(南昌15校联考)如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交时,其交点即为N),过点E作EQBC于Q,交折痕于点P。(1)当点分别与AB的中点、A点重合时,那么对应的点P分别是点、,则( , )、( , );当OMN=60时,对应的点P是点,求的坐标;(2)若抛物线,是经过(1)中的点、,试求a、b、c的值;(3)在一般情况下,设P点坐标是(x,y),那么y与x之间函数关系式还会与(2)中函数关系相同吗(不考虑x的取值范围)?请你利用有关几何性质(即不再用、三点)求出y与x之间的关系来给予说明.4、在正方形ABCD中,O是AD的中点,点P从A点出发沿ABCD的路线匀速运动,移动到点D时停止。(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与POD重叠部分的面积为y。求当t=4,8,14时,y的值。求y关于t的函数解析式。(2)如图2,若点Q从D出发沿DCBA的路线匀速运动,移动到点A时停止。P、Q两点同时出发,点P的速度大于点Q的速度。设t秒时,正方形ABCD与POD(包括边缘及内部)重叠部分的面积为S,S与t的函数图像如图3所示。P,Q两点在第 秒相遇;正方形ABCD的边长是 点P的速度为 单位长度/秒;点Q的速度为 当t为何值时,重叠部分面积S等于9?v 课后练习(一)数形结合1、若、()是方程的两个根,则实数、的大小关系为( ) A、 B、 C、 D、3,则m的取值范围是 10、若,则直线y=kx+k的图像必经过第象限。v 课后练习(二)陷阱题1、一个点与圆上最近点的距离为3,最远距离为5,则此圆的半径是 .(分点在圆外和点在圆内)2、已知BC半径为2cm的圆内的一条弦,点A为圆上除B,C外一点,若BC=cm,AB=cm,则ABC的度数为 。(A在优弧上和A在劣弧上)3、已知O的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论