2000吨肉类冷藏库设计【含CAD图纸、说明书】
收藏
资源目录
压缩包内文档预览:(预览前20页/共44页)
编号:36211100
类型:共享资源
大小:2MB
格式:ZIP
上传时间:2020-01-01
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
12
积分
- 关 键 词:
-
含CAD图纸、说明书
2000
肉类
冷藏库
设计
CAD
图纸
说明书
- 资源描述:
-

- 内容简介:
-
目 录摘要31.设计基本资料1.1设计目的41.2设计题目41.3设计指标41.4设计地点室外气象参数41.5冷藏库室内设计参数42.冷藏库热工计算2.1冷藏库吨位分配52.2冷藏库尺寸计算52.3库房平面设计62.4围护结构换热系数的确定62.5确定围护结构绝热层厚度63.库房冷负荷的计算3.1围护结构热流量103.2货物热流量123.3电机运转热流量133.4冷间操作热流量133.5库房冷却设备冷负荷143.6冷间机械负荷154.设备选型4.1冷凝温度与蒸发温度的确定164.2制冷原理的热工计算174.3压缩机的选择计算174.4冷凝器的选择计算184.5冷风机选择计算194.6中间冷却器的选择计算214.7油分离器的选择计算224.8高压贮液器的选择计算224.9低压循环贮液器的选择计算234.10集油器的选择计算 234.11冷却塔的选择计算 235.库房风系统的布置及水力计算5.1冷却间1、2的冷分配布置245.2冷冻间3、4的冷分配布置245.3冷藏间5、6、7的冷分配布置246.库房供回液的流量计算6.1氨液密度的计算266.2供入库房中氨的计算流量277.冷却水系统的水力计算7.1冷却水管道的水力计算287.2冷却水泵的选择计算288.氨供回管的水力计算8.1供氨管道的水力计算298.2回气管的水力计算308.3机房氨管道的水力计算30参考文献34英语原文及译文35摘要分配性冷藏库他们主要建设在大中城市、人口较多的水陆交通枢纽,专门贮藏经过冷加工的食品,以工调节淡旺季节、保证市场供应、提供外贸出口和做长期贮备之用。其特点是冷藏容量大并考虑多种食品的贮藏,其冻结能力小仅用于长距离调入冻结食品在运输过程中软化部分的再冻及当地小批量生鲜食品的冻结。压缩式制冷是根据制冷原理将压缩机、冷凝器、节流阀和蒸发器,以及为了使制冷效能更高、运行更安全的辅助设备(如油分离器、贮液器、气液分离器、循环储液桶、集油器、放空气器、阀件、仪表等)用管道连接组成的一个闭合制冷循环。关键词:压缩 冷藏库 节流 中间完全冷却ABSTRACTThey build the assigning freezer in large and medium cities , peoples more hubs of communications of land and water , is it undergo food of cold working to preserve specially , regulate light busy season section , guarantee market supply , offer foreign export and make with worker stock for a long time use. Characteristic its to refrigerate capacity to be heavy considering many kinds of preservation of food, it freeze ability to be little to used in at a long distance is it freeze food soften part freeze and local short run catch to freeze fresh food in the course of transporting to call inning only. Person who compress refrigeration according to refrigeration principle the compressor , condenser , choke valve and evaporimeter, and for make refrigeration to be efficiency even more high and operating still more safer assisting equipment (Such as the oil separator, person who store liquid, angry liquid separator , circulation store liquid barrel , collect oil device , person who drop a hint , valve piece , instrument ,etc.), close refrigeration circulation with pipeline one made up to joinKeyword: Compression Freezer Throttle Complete cooling of the middle 1 设计基本资料1.1设计目的:毕业设计是工科类专业教学的重要环节之一,是对学生在校所学理论知识的全面总结和综合检验。通过毕业设计初步了解建筑环境与设备工程专业的设计内容、程序和基本原则,了解设计计算的步骤和方法,培养学生的识图和制图能力,引导学生学会查找设计规范和设计手册,初步了解本专业的主要设备、附件及材料。参加制冷技术毕业设计的学生,通过设计要求掌握有关冷藏库有关制冷工艺设计的内容、程序及基本原则和制冷工艺设计计算方法并提高绘制设计图纸的能力。在设计过程中尽可能联系当前技术发展和环保要求,参照新规范进行设计,使设计达到技术、经济、运行管理的合理、可行和安全可靠。1.2设计题目:肉类冷藏库设计1.3设计指标:2000吨分配性冷藏库1.4设计地点室外气象参数:室外空气计算温度:30 室外计算湿度:最冷月平均 84 最热月平均 83 最热月14时平均 671.5 冷藏库室内设计参数库房名称相对湿度温度水蒸气分压力冷却间85%90%0 oC5.2102低温冷藏间95%-18 oC1.5102冻结间90%-23 oC1.6102穿堂85%26 oC28.4102汕头室外84%30 oC361022 冷藏库热工计算2.1根据冷藏库设计吨位将其分配如下: 冷却库:400吨 分为二个冷却间 每间吨位200吨冷冻库:400吨 分为二个冷冻间 每间吨位200吨冷藏库:1200吨 分为三个冷藏间 每间吨位400吨 2.2冷藏库尺寸计算根据公式: (2-1) 式中G冷库计算吨位(t); V1冷藏间的公称体积(m3); 冷藏间的体积利用系数; s食品的计算密度(kg/m3)根据冷库设计规范表3.0.5查得冻肉的密度为s=400 kg/m3根据公式(2-1)得, 冷却间根据冷库设计规范表3.0.3初步估计其=0.5得到V=1000鉴于建筑上对墙间距以3为模数的规定将冷却间的公称体积定为长宽高=18125.6 冷冻间的设计吨位为200吨/间同上其公称体积为:长宽高=18125.6冷藏间设计吨位400吨/间共3间根据公式(2-1)得, 根据冷库设计规范表3.0.3初步估计其=0.5得到V=2000鉴于建筑上对墙间距以3为模数的规定将冷却间的公称体积定为长宽高=30125.62.3库房平面图设计如下 2.4围护结构换热系数的确定 根据冷藏库设计P49公式(2-1-2)K0=0.60.00714t千卡/米2时 (此公式适用于+1030的温度范围)2.4.1冷却间设计温度:0,室内外温差t=30 围护结构传热系数K0=0.60.0071430=0.3858(千卡/米2时) =0.4475(W/)2.4.2冷冻间设计温度:23,室内外温差t=53 围护结构传热系数K0=0.6-0.0071453=0.2216(千卡/米2时) =0.257(W/)2.4.3冷藏间设计温度:18,室内外温差t=48 围护结构传热系数K0=0.6-0.0071448=0.2573(千卡/米2时) =0. 2985(W/)2.5确定围护结构绝热层厚度2.5.1各个库房外墙的材料确定如下: 室外室内370厚砖砌墙 =0.457(/W) 9厚二毡三油隔汽层 R2=0.041 沥青膨胀珍珠岩 20厚砖砌内衬墙双面水泥砂浆抹灰 =0.0222.5.2根据已定的围护结构系数确定各库房外墙绝热层材料的厚度:根据冷库设计规范公式4.4.2得 冷却间总热阻=2.235(/W)绝热层厚度 =0.08m 取其厚度为80冷冻间总热阻=3.89(/W)绝热层厚度 =0.166m 取其厚度为170冷藏间总热阻=3.35(/W)绝热层厚度 =0.138m 取其厚度为140根据冷库设计规范公式4.4.7得: 式中 Rmin围护结构最小总热阻(/W); tg围护结构高温侧的气温(); td围护结 t1围护结构高温侧空气的露点温度(); b热阻的修正系数,取b=1.0。 查表知高温侧空气的露点温度为t1=27.1围护结构最小总热阻: (/W)各库房内的温度不同,将冷却间,冷冻间,冷藏间的库内温度td:0,-18,-23依次带入上式得到各库房的最小热阻: 冷却间:Rmin=0.4448(/W);冷冻间Rmin=0.786(/W);冷藏间:Rmin=0.7117(/W)。而计算得到的个房间的热阻:冷却间:R0=2.235(/W);冷冻间R0=3.89(/W); 冷藏间:R0=3.35(/W)。均大于最小热阻,所选墙体材料及厚度合适。2.5.3库房地坪材料的选择计算 地坪采用地下埋设自然通风管道给地坪保温。地上地下80厚钢筋混凝土护面层随打随抹平15厚1:3水泥砂浆护毡层一毡二油50厚150#素混凝土预制块干铺350厚砂垫层,在垫层中埋250水泥通风管,中距10001300=3.81(/W)=0.26(W/)2.5.4库房楼板材料的选择计算 室外室内 60厚200#钢筋混凝土粘结层 20厚1:3水泥砂浆护毡层 一毡二油隔汽层 200厚软木层 20厚1:2.5水泥砂浆找平 240厚混凝土楼板 =3.33(/W) =3(W/)2.5.5库房内墙材料的选择计算 高温低温 刷大白浆两道 热沥青粘瓜米石粉15厚1:2水泥砂浆1米*1米分缝一毡二油隔汽层120厚软木绝热层20厚1:2.5水泥砂浆抹灰120厚砖墙,每3米加钢筋混凝土柱用钢筋拉结20厚1:2水泥砂浆抹灰刷大白浆两道 =2.15(/W)=0.47(W/)3 库房冷负荷计算3.1围护结构热流量按照下式计算 式中 维护结构热流量(W); 维护结构传热系数W/(m2); 维护结构传热面积(m2);维护结构两侧温差修正系数; 维护结构外侧的计算温度() 维护结构内侧的计算温度()3.1.1维护结构传热面积计算应该符合下列规定:1 屋面、地面和外墙的长、宽度应该自外墙外表面至外墙外表面或外墙外表面至内墙中或内墙中至内墙中计算。2 楼板和内墙长、宽度应自外墙内表面至外墙内表面或外墙内表面至内墙中或内墙中至内墙中计算。3 外墙的高度:地下室或底层,应自地坪的隔热层下表面至上层楼面计算。4 内墙的高度:地下室或底层和中间层,应自该层地面、楼面至上层楼面计算;顶层应自该层楼面至顶部隔热层下表面计算。 3.1.2维护结构热流量计算表如下:冷库围护结构耗冷量计算表序号库房名称及库温围护结构名称室外计算温度()tw计算面积()K0 (w/)库内外温差()tw-tnnQ1 (W)备注1冷却间(01) 0北外墙30.00 12.24 6.07 74.30 0.45 30.00 1.10 1097.18 Q1=K0*n*(tw-tn) 东外墙18.48 6.07 112.17 0.45 1.10 1656.52 南外墙12.24 3.07 37.58 0.45 1.10 554.92 南内墙12.24 3.00 36.72 0.45 1.00 492.97 地坪18.00 12.00 216.00 0.26 0.60 1010.88 屋顶18.00 12.00 216.00 0.30 1.30 2527.20 合计7339.66 2冷却间(02) 0北外墙30.00 12.00 6.07 72.84 0.45 30.00 1.10 1075.66 南外墙12.00 3.07 36.84 0.45 1.10 544.03 南内墙12.00 3.00 36.00 0.45 1.00 483.30 地坪18.00 12.00 216.00 0.26 0.60 1010.88 屋顶18.00 12.00 216.00 0.30 1.30 2527.20 合计5641.08 323的冷负荷内墙0.00 18.00 12.00 216.00 0.47 23.00 1.00 2334.96 4冷冻间(03) -23北外墙30.00 12.00 6.07 72.84 0.30 53.00 1.05 1209.98 南外墙12.00 3.07 36.84 0.30 1.05 611.97 南内墙12.00 3.00 36.00 0.30 1.00 569.54 地坪18.00 12.00 216.00 0.26 0.60 1785.89 屋顶18.00 12.00 216.00 0.30 1.20 4121.28 合计10633.62 5冷冻间(04) -23北外墙30.00 12.27 6.07 74.48 0.30 53.00 1.05 1237.21 西外墙18.54 6.07 112.54 0.30 1.05 1869.42 南外墙12.27 3.07 37.67 0.30 1.05 625.74 南内墙12.27 3.00 36.81 0.30 1.00 582.35 地坪18.00 12.00 216.00 0.26 0.60 1785.89 屋顶18.00 12.00 216.00 0.30 1.20 4121.28 合计10221.89 6冷藏间(05) -18东外墙30.00 30.57 6.07 185.56 0.26 48.00 1.05 2403.52 南外墙12.29 6.07 74.57 0.26 1.05 965.89 北外墙12.29 3.07 37.71 0.26 1.05 488.51 北内墙12.29 3.00 36.86 0.26 1.00 454.64 地坪30.00 12.00 360.00 0.26 0.60 2695.68 屋顶30.00 12.00 360.00 0.30 1.20 6220.80 合计13229.05 7冷藏间(06) -18南外墙30.00 12.00 6.07 72.84 0.26 48.00 1.05 943.48 北外墙12.00 3.07 36.84 0.26 1.05 477.18 北内墙12.00 3.00 36.00 0.26 1.00 444.10 地坪30.00 12.00 360.00 0.26 0.60 2695.68 屋顶30.00 12.00 360.00 0.30 1.20 6220.80 合计.10781.24 8冷藏间(07) -18西外墙30.00 30.57 6.07 185.56 0.26 48.00 1.05 2403.52 南外墙12.29 6.07 74.57 0.26 1.05 965.89 北外墙12.29 3.07 37.71 0.26 1.05 488.51 北内墙12.29 3.00 36.86 0.26 1.00 454.64 地坪30.00 12.00 360.00 0.26 0.60 2695.68 屋顶30.00 12.00 360.00 0.30 1.20 6220.80 合计13229.05 9围护结构总负荷71075.59 3.2货物热流量3.2.1货物热流量计算公式如下: 式中 货物热流量(W);冷间的每日进货质量(kg);h1货物入冷间开始温度时的比焓(kJ/kg);h2货物在冷间终止降温时的比焓(kJ/kg);t冷加工时间(h)。3.2.2冷间每日进货质量m应按如下规定:1 冷却间或冻结间应按设计冷加工能力计算;2 有从外库调入货物的冷库,其冻结物冷藏间每间每日进货质量应按该间计算吨位的5计算。 3.2.3 货物热流量计算表如下货物耗冷量Q2=1000G(h1-h2)/(T*3.6)房间装载能力(吨)日进出货量G(吨)进库温度t1()食品比焓h1(kJ/)终止温度t2食品比焓h2(kJ/)冷却时间T(h)冷负荷Q2(W)冷却间1200.00 10.00 35.00 318.00 0.00 212.00 24.00 12268.52 冷却间2200.00 10.00 35.00 318.00 0.00 212.00 24.00 12268.52 冷冻间3200.00 10.00 0.00 212.00 -18.00 4.60 24.00 24004.63 冷冻间4200.00 10.00 0.00 212.00 -18.00 4.60 24.00 24004.63 冷藏间5400.00 20.00 -18.00 4.60 -18.00 4.60 24.00 0.00冷藏间6400.00 20.00 -18.00 4.60 -18.00 4.60 24.00 0.00 冷藏间7400.00 20.00 -18.00 4.60 -18.00 4.60 24.00 0.00 合计72546.30 3.3电机运转热流量3.3.1 电动机运转热流量计算公式如下: 式中 电动机运转热流量(W); Pd电动机额定功率(KW); 热转化系数,电动机在冷间内时取1; b电动机运转时间系数,对空气冷却器陪用的电动机取1。3.3.2 电动机运转热流量计算表电动机运转负荷Q=1000*Pd*b*房间风机额定功率Pd(KW)热转化系数电动机运转时间系数bQ(W)冷却间1101110000冷却间2101110000冷冻间3121112000冷冻间4121112000冷藏间5151115000冷藏间6151115000冷藏间7151115000合计890003.4冷藏间操作热流量3.4.1操作热流量计算公式如下: 式中 操作热流量(W); d每平方米照明热流量,冷却间、冻结间、冷藏间和冷间内穿堂可取2.3W/; nk每日开门换气次数; Vn冷间内净体积(m3); hw冷间外空气的比焓(kJ/kg); hn冷间内空气的比焓(kJ/kg); M空气幕效率修正系数,可取0.5; 冷间内空气密度(kg/m3); 每日操作时间系数,按每日操作3小时计算; nr操作人员数量; r每个操作人员产生的热流量(W)冷间设计温度高于或等与-5时,宜取279W;冷间设计温度低于-5时,宜取395W。 3.4.2 冷间操作热流量见下表冷藏间操作热流量5=d*Ad+nk*Vn*0.5*p*(h1-h2)/(3.6*24)+nr*r*3/24房间房间面积Ad()d(W/)照明负荷50(W)室内体积Vn(M3)冷间外的比焓h1(kJ/)冷间内的比焓h2(kJ/)空气密度(/m3)开门次数nk操作流量/人r(W)操作人数nr操作热流量5冷藏间5360.00 2.30 828.00 2016.00 100.50 -16.40 1.41 1.00 395.00 6.00 3049.98 冷藏间6360.00 2.30 828.00 2016.00 100.50 -16.40 1.41 1.00 395.00 6.00 3049.98 冷藏间7360.00 2.30 828.00 2016.00 100.50 -16.40 1.41 1.00 395.00 6.00 3049.98 合计 9149.95 3.5各个库房冷却设备冷负荷3.5.1冷间冷却设备负荷计算公式为:式中 冷间冷却设备负荷(W); 围护结构热流量(W); 2货物热流量(W); 3电动机运转热流量(W); 4操作热流量(W); P货物热流系数。3.5.2各库房冷却设备负荷见下表冷间冷却设备负荷 房间围护结构冷负荷1货物热流量2电动机运转热流量3操作热流量4货物热流量系数P冷间冷却设备负荷s冷却间17339.66 12268.52 10000.00 1.333288.74 冷却间25641.08 12268.52 10000.00 1.331590.15 冷冻间312636.09 24004.63 12000.00 1.355842.11 冷冻间49622.02 24004.63 12000.00 1.352828.04 冷藏间513925.43 0.00 15000.00 3049.98 131975.42 冷藏间611082.36 0.00 15000.00 3049.98 129132.34 冷藏间713925.43 0.00 15000.00 3049.98 131975.42 合计266632.22 3.6冷间机械负荷3.6.1 冷间机械负荷计算式如下: 式中 围护结构热流量(W); 2货物热流量(W); 3电动机运转热流量(W);4操作热流量(W);n1围护结构热流量修正系数;n2货物流量折减系数;n3冷间电动机同期运转系数;n4冷间同期操作系数;R制冷装置和管道冷耗补偿系数,直接冷却取1.07。3.6.2 货物热流量折减系数n2应根据冷间的性质确定。 冷却物冷藏间宜取0.30.6;冻结物冷藏间宜取0.50.8;冷加工间和其他冷间宜取13.6.3冷间机械负荷计算见下表:房间围护结构冷负荷1围护结构热流量修正系数n1货物热流量2货物流量折减系数n2电动机运转热流量3冷间电动机同期运转系数n3操作热流量4冷间同期操作系数n4制冷装置和管道冷耗补偿系数R机械负荷j冷却间17339.66 112268.52 0.610000.00 10.51.0726429.83 冷却间25641.08 112268.52 0.610000.00 10.51.0724612.34 冷冻间312636.09 124004.63 0.612000.00 10.51.0741771.59 冷冻间49622.02 124004.63 0.612000.00 10.51.0738546.54 冷藏间513925.43 10.00 0.615000.00 0.53049.98 0.51.0724556.96 冷藏间611082.36 10.00 0.615000.00 0.53049.98 0.51.0721514.86 冷藏间713925.43 10.00 0.615000.00 0.53049.98 0.51.0724556.96 合计201989.07 4 设备选型4.1 冷凝温度与蒸发温度的确定4.1.1冷凝温度的确定:根据实用制冷工程设计手册P141 表3-2选用立式管壳式冷凝器t1冷却水进口温度t2冷却水出口温度m冷凝器中平均传热温差,取最小值冷却水温升t2-t1,取23当t30时取下限tk=(27+29)/2+4=32 冷凝压力Pk=12.3788105Pa4.1.2蒸发温度的确定蒸发温度取33 蒸发压力P0=1.036105Pa压缩比Pk/p0=11.958采用一级中间冷却双级压缩式制冷系统4.1.3中间温度的确定由实用制冷工程手册P44查得tm=0.4tk+0.6t0+3=0.4370.6(33)+3=24.2制冷原理的热工计算4.2.1原理图如下4.2.2根据原理图得到的压焓图如下 4.2.3通过R717的Ph图得到:h8=h9=320kJ/kg h5=663 kJ/kg h4=1953 kJ/kg h0=1720 kJ/kg 单位制冷量 q0=h0h9=1720320=1400 kJ/kg制冷剂的质量流量 kg/s4.3压缩机的选择计算根据冷间机械负荷j=202KW选用3台烟台冷冻机总厂125系列单机双级制冷压缩机型号为S8SF812.5型,其单台制冷量78KW低压气缸容积424m3/h 高压气缸容积141m3/h 气缸直径 125 4.3.1压缩机的输气系数 高压级输气系数: 查实用供热手册P156低压级输气系数4.4冷凝器的选择计算冷凝器的热负荷:k=MR(h4h5)=0.148(1953663)=190.9KW冷凝器传热面积的确定:根据制冷辅助设备P1选用LNA40型立式冷凝器2台单台设计压力2.0Mp4.5蒸发器冷风机的选择计算4.5.1蒸发面积的确定根据实用制冷工程设计手册P730查得冷风机传热系数K取12.02W/房间1:设备冷负荷为33.3KW 蒸发面积房间2: 设备冷负荷为31.59KW 蒸发面积房间3: 设备冷负荷为55.84KW 蒸发面积房间4: 设备冷负荷为52.83KW 蒸发面积房间5: 设备冷负荷为31.975KW 蒸发面积房间6: 设备冷负荷为29.13KW 蒸发面积房间7: 设备冷负荷为31.975KW蒸发面积4.5.2冷风机风量的计算各房间的风量按qv=计算qv冷风机的风量m3/h库房冷却设备负荷W配风系数;冻结间采用=0.91.1,冷却间、冷藏间采用=0.50.6m3/wh各房间风机风量计算:房间1 qv=0.533.3103=16644.4m3/h房间2 qv=0.531.59103=15795m3/h房间3 qv=0.955.84103=50257.9.4m3/h房间4 qv=0.952.83103=47545.2.4m3/h房间5 qv=0.531.975103=15987.7m3/h房间6 qv=0.529.13103=14566.2m3/h房间7 qv=0.531.975103=15987.7m3/h4.5.3风机的选择根据系列制冷设备P5房间1、2均选用GFL70型吊顶式冷风机2台参数:蒸发面积70 、冲霜水量4t/h 轴流风机型号:LEF7总风量10000m3/h、全压270Pa 配套电动机型号:YLZ4总功率2.2kw房间3、4均选用GFJ170型吊顶式冷风机2台参数:蒸发面积170 、冲霜水量4t/h 轴流风机型号:LEF6总风量30000m3/h、全压250Pa 配套电动机型号:YLZ4总功率4.4kw房间5、6、7均选用GFD100型吊顶式冷风机2台 GFD70型1台GFD100型参数:蒸发面积100 、冲霜水量4t/h 轴流风机型号:LEF7总风量10000m3/h、全压420Pa 配套电动机型号:YLZ4总功率2.2kwGFD70型参数:蒸发面积70 、冲霜水量4t/h 轴流风机型号:LEF6总风量8400m3/h、全压270Pa 配套电动机型号:YLZ4总功率1.1kw4.6中间冷却器的选择计算4.6.1中间冷却器直径的确定氨压缩机高压级的输气系数v氨压缩机高压级的理论输气量WZ中间冷却器内的气体速度不应大于0.5m/s4.6.2中间冷却器蛇形管冷却面积应按下式计算 冷库设计规范 P42 6.37中间温度 tm=4中间冷却器的热负荷 z=MR(h5h8)=0.48(640320)=47.4kw式中 1冷凝温度z中间冷却温度c中间冷却器蛇形管的出液温度应比中间冷却器温度高354.6.3中间冷却器的选择根据计算由制冷辅助设备查得选用ZZQ700系列 其中 : 外径716mm接管通径 d1 150 L 1250 Do 700d2 25 H 3300 d3 32 h1 456 d4 20 a 130 d5 20 b 140 c 604.7油分离器的选择计算 选用YFA-65TL型填料式油分离器由冷库设计规范P43 6.3.9查得其主要尺寸及接通管径d1 65mm Do 412mm H 2365mm h1 1440mm h2332mm4.8高压贮液器的选择计算 由冷库设计规范P44 6.3.12查得取1 取70 v取0.00169 m3/kg每小时氨液的总循环量 kg/s m3/s根据冷冻空调设备大全P298选用ZA1.5型 贮液器壳休尺寸 氨管接口D:800 mm d1 40mmS:12mm d2 32mm:3000mm d3 20L:3970mm主要尺寸l1 320mm l4 250mml2800mm l5 1400mm4.9低压循环贮液器的选择计算 冷藏库设计规范P45 6.3.16带入数据得其体积(选择上进下出式供液系统)选用ZDX-1.2L型低压循环贮液器4.10集油器的选择计算根据实用制冷工程设计手册 P204因为制冷量小于230KW.手用壳体直径为159的集油器1台4.11 冷却塔的选择计算 冷凝器中的热负荷190.9KW冷却水供回水温度分别为32、34 冷却水的循环水量体积流量单台压缩机所需水量为2.8 m3/h所以所选冷却塔理论总水量为90.482.8 m3/h通过以上计算查得资料选用BNL250型冷却塔2台其中:单台冷却水量46.5m3/h通风装置 风量27500,风机直径1200mm,电机功率1.5KW接管直径 进100mm 出125mm布水管自由水头0.3m主要外型及安装尺寸 2260 H2758 11970 H1103 b4005 库房风系统的布置及水力计算5.1 冷却间1、2的冷分配布置选用2台吊顶式冷风机 单台风量10000m3/h 库房设计风量16000m3/h采用吊顶风机安装喷口低温快递冷却法 实用制冷工程设计手册P677喷口速度取为20m/s 射流与喷口直径之比为655.2 冷冻间3、4的冷分配布置选用2台吊顶式冷风机单台风量 30000m3/h库房设计风量 库房3为50257.9m3/h 库房4为47545.2m3/h系统布置图同上5.3房间5、6、7(冷冻物冷藏间)的冷分配布置风管布置图如下:5.3.1风管的管道计算 库房实际总风量为16000 m3/h1.拟定风口平均流速5m/h设计每个风口流量为500m3/h 则总共所需风口数个每两个风口间距为1.8m, 则风道总长度为27m,孔口流量系数取=0.6每个出风口的面积大约为侧孔静压流速为侧孔应有静压按的原则设定,求出第一侧孔前管道断面1的截面面积A1设断面1处的空气流速则断面1动压断面1截面积 断面1气压2.计算12的阻力,再求出断面处的气 管段12的摩擦阻力: 已知风量L=15000m3/h 管径应取断面1、2的平均直径,得D2未知 近似的D1=1.189作为平均直径查得Rm1=0.125 5.3.2各管段尺寸计算表管段号风量 Q (m3/h)假定流速v1(m/s)管道尺寸 ab(mm)实际流速v (m/s)动压Pd(Pa)比摩阻 Rm (Pa/m)l(m)沿程阻力Py=Rml(Pa)局部阻力系数局部阻力 Pj=Pd(Pa)总阻力P(Pa)1215000412508004.1710.40.161.80.2880.727.4887.7762314000412508003.899.070.161.80.2840.686.1686.4523413000412508003.617.820.131.80.2340.645.0055.2394512000412506304.2310.750.211.80.3780.788.3858.7635611000412506303.889.030.181.80.2560.686.146.39667100003.812506303.527.470.171.80.3060.644.785.0867890003.810006303.979.450.211.80.3690.767.187.5498980003.710006303.527.470.181.80.2560.644.7815.03791070003.68006303.858.930.231.80.4140.746.617.024101160003.58006303.36.560.211.80.360.644.24.56111250003.58005003.477.230.221.80.3960.644.635.026121340003.46305003.537.470.251.80.450.75.235.68131430003.45005003.336.670.261.80.4680.684.545.008141520003.35004002.74.630.251.80.450.83.438.06151610003.23203202.74.630.381.80.6840.83.7044.388风管总阻力P总=92.044Pa6 库房供回液的流量计算6.1氨液密度的计算设计中供入库房的液体氨的流量为计算得到的氨的流量的4倍,而氨液流过蒸发器后,只有1/4的氨液蒸发转化为氨气,回气管中为气液混合物,混合物的密度计算如下:33情况下饱和氨蒸汽密度为0.98109kg/m3饱和氨流的密度为681.442kg/m3 所以混合物的密度: =511.3 kg/m36.2供入库房的计算流量库房1 设备冷负荷 33288.74W 冷风机中氨液的流量库房2 设备冷负荷31590.11W 冷风机中氨液的流量库房3 设备冷负荷55842.11W 冷风机中氨液的流量库房4 设备冷负荷52828.04W 冷风机中氨液的流量 库房5 设备冷负荷31975.42W 冷风机中氨液的流量 库房6 设备冷负荷29132.34W 冷风机中氨液的流量库房7 设备冷负荷31975.42W 冷风机中氨液的流量实际供入各库房的氨液的体积流量分别为通过公式求得V1=0.5m3/h V2=0.48 m3/h V3=0.843 m3/h V4=0.58 m3/hV5=0.48 m3/h V6=0.44 m3/h V7=0.483 m3/h V总=4.03 m3/h6.3 库房回气管道的实际流量 V1=0.67m3/h V2=0.63 m3/h V3=1.13 m3/h V4=1.06 m3/hV5=0.63m3/h V6=0.56 m3/h V7=0.63 m3/h V总=5.32 m3/h7 冷却水系统的水力计算7.1 冷却水管道的水力计算7.1.1冷却水计算系统简图如下: 7.1.2水力计算表如下:冷却水管道水力计算管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)122.801.59DN251256.005.001744.000.528720.00653.129373.12238.401.86DN401726.002.001764.001.803528.003106.806634.80348.401.86DN401726.001.001764.000.941764.001622.443386.444593.002.10DN1252205.001.00470.001.23470.002712.153182.155646.501.65DN1001361.002.00402.000.62804.00843.821647.826746.501.65DN1001361.001.50402.000.26603.00353.86956.868946.502.10DN1001361.001.50402.000.68603.00925.481528.4891093.002.10DN1252205.003.00470.000.261410.00573.301983.30101193.002.10DN1252205.005.00470.000.262350.00573.302923.3041242.302.30DN802735.003.00977.000.262931.00711.103642.1035258.377.2 冷却水泵的选择计算 由4.11计算得到冷却水总流量为93m3/h根据水力计算得知最不利环路的总阻力为35258.37Pa通过以上参数选择G50-32-9电动水泵两台单台水泵额定流量为50m3/h 额定扬程为32m 配用功率为9KW 同步转速为1500r/min 吸入口直径100 排出口直径100 八 氨供回管的水力计算 8.1由氨泵供入库房的管道的水力计算 管道水力计算表如下:库房供液管的水力计算管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)A-A0.800.71DN20171.769.50298.900.962839.55164.893004.44B-B0.840.75DN20189.6212.80303.803888.64182.034070.67C-C0.480.76DN15194.2225.20460.6011607.12186.4511793.57D-D0.500.79DN15210.5038.40493.0018931.20202.0819133.28E-E0.480.76DN15194.2238.60460.6017779.16186.4517965.61F-F0.440.69DN15162.2225.80362.609355.08155.739510.81G-G0.480.76DN15194.2213.80460.606356.28186.456542.7372021.118.2 回气管的水力计算管道水力计算表如下:库房回气管水力计算管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)A1.060.94DN20225.909.50297.300.962824.35216.863041.21B1.131.00DN20255.7012.80301.203855.36245.474100.83C0.630.99DN15250.6025.20413.8010427.76240.5810668.34D0.671.05DN15283.8038.40456.3017521.92272.4517794.37E0.630.99DN15250.6038.60413.8015972.68240.5816213.26F0.560.88DN15198.3025.80332.808586.24190.378776.61G0.630.99DN15250.6013.80413.805710.44240.585951.0266545.63 8.3 机房部分氨管的水力计算 8.3.1低压储液循环桶到氨泵间管道的水力计算管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)124.030.57DN50110.701.0063.7015.2863.707051.617115.31232.020.45DN4069.000.4046.061.8018.421271.181289.618404.918.3.2冷凝器到贮液器间的管道的水力计算 水力计算表如下:管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)120.500.45DN2067.591.50127.402.06191.10139.24330.34231.010.35DN3241.505.3557.825.96309.34247.34556.68887.028.3.3高压供液管的水力计算 管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)111.011.10DN20412.279.38411.607.343860.813026.086886.898.3.4 氨泵到调氨站间管道的水力计算管段流量(m3/h)流速(m/s)管径动压(Pa)管长(m)Rm(Pa/m)沿程阻力(Pa)局部阻力(Pa)总阻力(Pa)124.030.89DN40270.494.50186.202.32837.90627.541465.449 管道设备的保温与刷漆 9.1管道保温与刷漆制冷系统管道和设备经排污、严密试验合格后,均应涂防锈底漆二道,色漆二道(有保温层的在其保护面层的外表面涂色漆二道)。光滑排管可仅刷防锈漆二道。9.2色漆的颜色如下表所示名称颜色名称颜色高、低压液体管淡黄(Y06)低压循环贮液器、中间冷却器天酞蓝(pb09)吸气管、回气管天酞蓝(PB09)集油器赭黄(YR02)高压气体管、安全管、均压管大红(R03)压缩机、空气冷却器按出厂涂色放油管赭黄(YR02)各种阀体黑色水管湖绿(BG02)截止阀手轮淡黄(Y06)油分离器大红(R03)节流阀手轮大红(R03)冷凝器银灰(B04)放空气管乳白(Y11)贮液器淡黄(Y06)参考资料1. 空气调节用制冷技术2. 空气调节3. 采暖通风与空气调节设计规范4. 冷库设计规范5. 民用建筑暖通空调设计技术措施6. 空气调节设计手册7. 实用制冷工程设计手册8. 冷藏库设计9. 冷库制冷设计手册10. 建筑设备施工安装图册11. 暖通空调设计选用手册(下)12. 采暖通风与空气调节制图标准13. 制冷设备空气分离器设备安装工程施工及验收规范14. 制冷空调设备产品样本15. 制冷工程设计实例图集16. 冷冻空调设备大全17. 冷藏库制冷设备安装与试运转18. 简明空调用制冷设计手册英语原文及译文Substitute Refrigerants BackgroundThe alternative refrigerants are as safe or safer than those they replace, but more care is needed with all refrigerants.Refrigerant HistoryThe first practical refrigerating machine was built by Jacob Perkins in 1834; it used ether in a vapor-compression cycle. The first absorption machine was developed by Edmond Carr in 1850, using water and sulfuric acid. His brother, Ferdinand Carr demonstrated an ammonia/water refrigeration machine in 1859. A mixture called chemogene, consisting of petrol ether and naphtha, was patented as a refrigerant for vapor-compression systems in 1866. Carbon dioxide was introduced as a refrigerant in the same year. Ammonia was first used in vapor-compression systems in 1873, sulfur dioxide and methyl ether in 1875, and methyl chloride in 1878. Dichloroethene (dilene) was used in Willis Carriers first centrifugal compressors, and was replaced with methylene chloride in 1926. Nearly all of the early refrigerants were flammable, toxic, or both, and some also were highly reactive. Accidents were common. The task of finding a nonflammable refrigerant with good stability was given to Thomas Midgley in 1926. He already had established himself by finding tetraethyl lead, to improve the octane rating of gasoline.With his associates Henne and McNary, Midgley observed that the refrigerants then in use comprised relatively few chemical elements, clustered in an intersecting row and column of the periodic table of elements. The element at the intersection was fluorine, known to be toxic by itself. Midgley and his collaborators felt, however, that compounds containing it should be both nontoxic and nonflammable.Their attention was drawn to organic fluorides by an error in the literature. It showed the boiling point for tetrafluoromethane (carbon tetrafluoride) to be high compared to those for other fluorinated compounds. The correct boiling temperature later was found to be much lower. Nevertheless, the incorrect value was in the range sought and led to evaluation of organic fluorides as candidates. The shorthand convention, later introduced to simplify identification of the organic fluorides for a systematic search, is used today as the numbering system for refrigerants. The number designations unambiguously indicate both the chemical compositions and structures.Within three days of starting, Midgley and his collaborators had identified and synthesized dichlorodifluoromethane, now known as R-12.The first toxicity test was performed by exposing a guinea pig to the new compound. Surprisingly, the animal was completely unaffected, but the guinea pig died when the test was repeated with another sample. Subsequent examination of the antimony trifluoride, used to prepare the dichlorodifluoromethane from carbon tetrachloride, showed that four of the five bottles available at the time contained water. This contaminant forms phosgene (COCl2) during the reaction of antimony trifluoride with carbon tetrachloride. Had the initial test used one of the other samples, the discovery of organic fluoride refrigerants might well have been delayed for years.The development of fluorocarbon refrigerants was announced in April 1930. To demonstrate the safety of the new compounds, at a meeting of the American Chemical Society, Dr. Midgley inhaled R-12 and blew out a candle with it. While this demonstration was dramatic, it would be a clear violation of safe handling practices today.CFC RefrigerantsCommercial chlorofluorocarbon (CFC) production began with R-12 in early 1931, R-11 in 1932, R-114 in 1933, and R-113 in 1934; the first hydrochlorofluorocarbon (HCFC) refrigerant, R-22, was produced in 1936. By 1963, these five products accounted for 98% of the total production of the organic fluorine industry. Annual sales had reached 372 million pounds, half of it R-12. These chlorofluorochemicals were viewed as nearly nontoxic, nonflammable, and highly stable in addition to offering good thermodynamic properties and materials compatibility at low cost. Close to half a century passed between the introduction of CFCs and recognition of their harm to the environment when released. Specific concerns relate to their depletion of stratospheric ozone and to possible global warming by actions as greenhouse gases. Ironically, the high stability of CFCs enables them to deliver ozone-depleting chlorine to the stratosphere. The same stability prolongs their atmospheric lifetimes, and thus their persistence as greenhouse gases.Ideal RefrigerantsIn addition to having the desired thermodynamic properties, an ideal refrigerant would be nontoxic, nonflammable, completely stable inside a system, environmentally benign even with respect to decomposition products, and abundantly available or easy to manufacture. It also would be self-lubricating (or at least compatible with lubricants), compatible with other materials used to fabricate and service refrigeration systems, easy to handle and detect, and low in cost. It would not require extreme pressures, either high or low. There are additional criteria, but no current refrigerants are ideal even based on the partial list. Furthermore, no ideal refrigerants are likely to be discovered in the future.ToxicityA fundamental tenet of toxicology, attributed to Paracelsus in the 16th century, is dosis solo facit venenum, the dose makes the poison. All substances are poisons in sufficient amounts. Toxic effects have been observed for such common substances as water, table salt, oxygen, and carbon dioxide in extreme quantities. The difference between those regarded as safe and those viewed as toxic is the quantity or concentration needed to cause harm and, in some cases, the duration or repetition of exposures. Substances that pose high risks with small quantities, even with short exposures, are regarded as highly toxic. Those for which practical exposures cause no harm are viewed as safer.There are multiple reasons that toxicity concerns have surfaced with the introduction of new refrigerants. First, they are less familiar. Second, public consciousness of health hazards is growing. Manufacturer concerns with liability also have increased. Third, few refrigerant users fully understand the measures and terminology used to report the extensive toxicity data being gathered. And fourth, the new chemicals are somewhat less stable when released and exposed to air, water vapor, other atmospheric chemicals, and sunlight. This increased reactivity is desired to reduce atmospheric longevity, and thereby to reduce the fraction of emissions that reaches the stratospheric ozone layer or that persists in the atmosphere as a greenhouse gas. While toxicity often increases with higher reactivity, atmospheric reactivity is not necessarily pertinent. The most toxic compounds are those with sufficient stability to enter the body and then decompose or destructively metabolize in a critical organ. As examples, most CFCs are very stable in the atmosphere, generally less stable than either HCFCs or hydrofluorocarbons (HFCs) in refrigeration systems, and generally have comparable or greater acute toxicity than HCFCs or HFCs.Concerns with refrigerant safety have been heightened by negative marketing by competing equipment vendors. Frequent overstatement, to influence customer perceptions, coupled with contradictions have fueled discomfort in refrigerant choices for all of the alternative refrigerants.Acute versus Chronic RisksAcute toxicity refers to the impacts of single exposures, often at high concentrations. It suggests the possible risk levels for the consequences of accidental releases, such as from a spill or rupture. It also is a gauge for service operations in which high exposures may be experienced for brief periods, such as upon opening a compressor or removing a gasket that may have refrigerant trapped under it.Chronic toxicity refers to the effects of repeated or sustained exposures over a long period, such as that experienced in a lifetime of working in machinery rooms. Few technicians actually spend their full day in machinery rooms and concentrations may fluctuate. Most chronic exposure indices, therefore, are expressed as time-weighted average (TWA) values.The nature of chronic effects is such that most can be anticipated and/or monitored, and occupational safety measures can be taken to minimize their impacts. As an example, refriger- ant concentrations can be lowered by designing equipment with reduced leakage and promptly repairing leaks that do occur. Refrigerant sensors can be used to sense and warn technicians of concentration increases. Further measures are identified below, in the discussion of safety standards.From a safety perspective, the goal is to reduce both acute and chronic risks.PAFT TestsThe Programme for Alternative Fluorocarbon Toxicity Testing (PAFT) is a cooperative effort sponsored by the major producers of CFCs from nine countries. PAFT was designed to accelerate the development of toxicology data for fluorocarbon substitutes, as refrigerants and for other purposes. Examples of the other uses include as blowing agents, aerosol propellants, and solvents. The PAFT research entails more than 100 individual toxicology tests by more than a dozen laboratories in Europe, Japan, and the United States. The first tests were launched in 1987, to address R-123 and R-134a (PAFT I). Subsequent programs were initiated for R-141b (PAFT II), R-124 and R-125 (PAFT III), R-225ca and R-225cb (PAFT IV), and R-32 (PAFT V). The cost of testing for each compound is $1-5 million and the duration is 2-6 years, depending on the specific tests deemed necessary or indicated by initial findings.These PAFT studies investigate acute toxicity (short-term exposures to high concentrations, such as from accidental releases), subchronic toxicity (repeated exposure to determine any overall toxicological effect), and chronic toxicity and carcinogicity (lifetime testing to assess late-in-life toxicity or potential to cause cancer). The experiments also gauge genotoxicity (effects on genetic material, an early screen for possible cancer-inducing activity), reproductive and developmental toxicity (teratology, assessment of the effects on the reproductive system and of the potential for causing birth defects), and ecotoxicity (assessment of potential to affect living organisms in the environment).A new program, initiated in 1994, is addressing the mechanistic causes of tumors and other effects observed in other programs. PAFT M was spurred by findings of benign tumors in earlier tests of R-123, R-134a, and R-141b. Although the tumors occurred late in life and were neither cancerous nor life threatening, a better understanding of causal effects is being sought.译文致冷剂的利用发展过程其它的致冷剂更那么安全或者比那些安全,他们替换,但是更多的小心被全部致冷剂需要。解热的历 在1834年雅各布珀金斯建造了第一个实际的冷藏的机器; 它在一个蒸汽压缩系列里使用以太。在1850年,埃德蒙卡尔开发了利用水和硫酸制造的第一个吸收机器。 他的兄弟,费迪南卡尔,在1859年证明氨水/水冷藏机器,叫chemogene的混合物,由以太和石油汽油组成,被取得专利权作为适合1866系统蒸汽压缩。二氧化碳同年被作为一种致冷剂介绍。氨水首先在蒸汽压缩系统在1873使用,二氧化硫和甲基以太在1875使用,甲基氯化物在1878内使用。威尼斯搬运工Dichloroethene第一个使用离心压气机,并且在1926替换methylene氯化物。 几乎所有早的致冷剂是易燃,有毒,或者两的都有的,并且一些事故是普通的。 1926年Midgley告诉托马斯他发现的这种物质不易燃解而且稳定性好。他通过tetraethyl发现的结果指导自己,以便改进汽油的辛烷额定值。随着他同事亨和麦克纳里,Midgley观察到致冷剂中很少使用相对的化学元素。通过元素周期表他发现十字路口的元素是氟,而大家读知道知道氟单独是有毒的
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。