附录目录.doc

小型风力发电机组动力结构设计-家用垂直风力发电机【CAD图纸+毕业论文】【答辩通过】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:363555    类型:共享资源    大小:5.95MB    格式:RAR    上传时间:2014-11-11 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
小型 风力 发电 机组 动力 结构设计 cad 图纸 毕业论文 答辩 通过
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

摘要

随着化石能源的过渡消耗以及其对环境带来的严重影响,风能凭借其清洁、可循环利用等诸多优点而越来越受到重视,各国都在积极开发利用本国的风能资源,中国也不例外。本文根据导师布置的毕设课题《小型风力发电机组动力结构设计》中的要求,探索小型风力发电机动力结构的设计。
   主要研究结果如下:
1、根据风力发电机叶片设计的经典理论设计叶片的外形,利用三维建模软件建立叶片的三维实体模型。
2、根据设计需求,设计出了轴毂、支撑架等零部件,并利用Solidworks软件建立了三维模型。
3、根据设计需求,设计出了变向器装置,并合理地选择了轴承、键等配套零部件。

关键词:小型风力发电机;叶片;轴承。



Abstract
   With the consumption of fossil fuels and their serious impact on the environment, the wind energy with the advantages of clean and can be recycled for use is growing importance to many countries and they are actively developing and utilizing its wind resource, China is no exception. This paper is based on the requirements of The Power Conformation of Small Wind Turbine to explore the method for design and manufacturing process of small wind turbine using of composite materials.

The main results achieved are as following:
   1 .According to the classic theory of the wind turbine blade design and using 3D modeling software, the blade's 3-D solid model is established.
   2. Based on the requirements of design ,the aim is to design some parts as bushing and brace, even more I should establish he blade's 3-D model using the software of Solidworks.
3. Based on the requirements of design, my aim is to select some parts just like axle-bearing, bond reasonably, and deign the apartment of transformer.

Keywords: small wind turbine;blade;axle-bearing;


目录
摘要(中文)…………………………………………………………………………Ⅰ
(英文)…………………………………………………………………………Ⅱ第一章概述  …………………………………………………………………………1
1.1课题研究的目的和意义 …………………………………………………………………1
1.2 课题的研究现状及已有成果 ……………………………………………………………2
1.3本课题的研究内容 ………………………………………………………………………4

第二章 风能资源 ……………………………………………………………………6
2.1风的重要性 ………………………………………………………………………………6
2.2风能的特点和限制性 ……………………………………………………………………6
2.3我国风能资源区划 ………………………………………………………………………9
2.4什么样的风能对人类有用………………………………………………………………10

第三章 风力发电机组的设计方案确定  …………………………………………11
3.1风力发电机的结构………………………………………………………………………11
3.2风力发电机的分类………………………………………………………………………12

第四章 垂直轴风力发电机组部分零部件的设计  ………………………………17
4.1风力机的基本原理………………………………………………………………………17
4.2小型风力发电机部分零部件的设计……………………………………………………18

第五章 垂直轴风力发电机正常工作的条件  ……………………………………30
5.1垂直轴风力发电机的调速………………………………………………………………30
5.2垂直轴风力发电机的启动………………………………………………………………30
5.3垂直轴风力发电机制动器的设计………………………………………………………30
 5.4 小型风力发电系统中配置的蓄电池……………………………………………………30
5.5发电机系统中的防雷击设施……………………………………………………………31

结束语 ………………………………………………………………………………32
参考文献 ……………………………………………………………………………33



第一章 概述

1.1课题研究的目的和意义
数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。
当前,全球都面临着能源枯竭、环境恶化、气温升高等问题,日益增长的能源需求、能源安全问题受到世界各国广泛关注。风能是一种可再生能源,它资源丰富,是一种永久性的本地资源,可为人类提供长期稳定的能源供应;她安全、清洁,没有燃料风险,更不会在使用中破坏环境。为此,世界各国都在加快风力发电技术的研究,以缓解越来越重的能源与环境压力,中国也不例外。
中国是世界上最大的煤炭生产国和消费国,能源利用以煤炭为主。在当前以石化能源为主体的能源结构中,煤炭占73.8%,石油占18.6%,天然气占2%,其余为水电等其它资源。在电力的能源消费中,也是以煤炭为主,燃煤发电量占总发电量的80%。但是,能为人类所用的石化资源是有限的,据第二届环太平洋煤炭会议资料介绍,按目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年。随着人口的增长和经济的发展,能源供需矛盾加剧,如果不趁早调整以石化能源为主体的能源结构,势必形成对数亿年来地球积累的生物石化遗产更大规模的挖掘、消耗,由此将导致有限的石化能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。电力部己制定“大力发展水电,继续发展火电,适当发展核电,积极发展新能源发电”的基本原则,把风力发电作为优化我国电力工业结构跨世纪的战略发展目标①。
表1-1 1996-2005年世界风电市场增长
从表1-1可以看出,世界上的风电能源增长的非常迅速,10年平均增长率达到了29.77。截止2005年底,全世界并网运行的风力发电机总装机容量达到59237 MW ,是1996年装机容量的9.76倍②。
风力发电近几年发展如此之快,是因为它有许多优点:1.设备简单,投资少,成本低,风力发电机的整个设备成本不足功率相当的火力发电、水力发电和核电站成本的1/4,在二、三年内就可以收回全产投资;2.节省燃料和运输费用。在风力资源丰富的地区,风力是取之不尽,用之不竭的,可就地建立风力发电站,就地用电,这样就可以节省大量的输电设备和


内容简介:
小型风力发电机部分零部件三维图图1 小型风力发电机叶片三维图图2 小型风力发电机轴毂三维图图3 小型风力发电机风力机三维图1图4 小型风力发电机风力机三维图2Primer on Small Wind TurbinesA Little HistoryThe wind has been an important source of energy in the U.S. for a long time. The mechanical windmill was one of the two high-technology inventions (the other was barbed wire) of the late 1800s that allowed us to develop much of our western frontier. Over 8 million mechanical windmills have been installed in the US since the 1860s and some of these units have been in operation for more than a hundred years. Back in the 1920s and 1930s, before the REA began subsidizing rural electric coops and electric lines, farm families throughout the Midwest used 200-3,000 watt wind generators to power lights, radios, and kitchen appliances. In the late 1970s and early 1980s intense interest was once again focused on wind energy as a possible solution to the energy crisis. As homeowners and farmers looked to various electricity producing renewable energy alternatives, small wind turbines emerged as the most cost effective technology capable of reducing their utility bills. Tax credits and favorable federal regulations (PURPA) made it possible for over 4,500 small, 1-25 kW, utility-intertied wind systems to be installed at individual homes between 1976-1985. Another 1,000 systems were installed in various remote applications during the same period. Small wind turbines were installed in all fifty States. None of the small wind turbine companies, however, were owned by large companies committed to long term market development, so when the federal tax credits expired in late 1985, and oil prices dropped to $10 a barrel two months later, most of the small wind turbine industry once again disappeared. The companies that survived this market adjustment and are producing small wind turbines today are those whose machines were the most reliable and whose reputations were the best.The Cost FactorPhotovoltaics is an attractive technology in many ways, but cost is not one of them. Small wind turbines can be an attractive alternative, or addition, to those people needing more than 100-200 watts of power for their home, business, or remote facility. Unlike PVs, which stay at basically the same cost per watt independent of array size, wind turbines get less expensive with increasing system size. At the 50 watt size level, for example, a small wind turbine would cost about $8.00/watt compared to approximately $6.00/watt for a PV module. This is why, all things being equal, PV is less expensive for very small loads. As the system size gets larger, however, this rule-of-thumb reverses itself. At 300 watts the wind turbine costs are down to $2.50/watt ($1.50/watt in the case of the Southwest Windpower Air 403), while the PV costs are still at $6.00/watt. For a 1,500 watt wind system the cost is down to $2.00/watt and at 10,000 watts the cost of a wind generator (excluding electronics) is down to $1.50/watt. The cost of regulators and controls is essentially the same for PV and wind. Somewhat surprisingly, the cost of towers for the wind turbines is about the same as the cost of equivalent PV racks and trackers. The cost of wiring is usually higher for PV systems because of the large number of connections.For homeowners connected to the utility grid, small wind turbines are usually the best next step after all the conservation and efficiency improvements have been made. A typical home consumes between 800-2,000 kWh of electricity per month and a 4-10 kW wind turbine or PV system is about the right size to meet this demand. At this size wind turbines are much less expensive.ReliabilityIn the past reliability was the Achilles Heel of small wind turbine products. Small turbines designed in the late 1970s had a well deserved reputation for not being very reliable. Todays products, however, are technically advanced over these earlier units and they are substantially more reliable. Small turbines are now available that can operate 5 years or more, even at harsh sites, without need for maintenance or inspections and 5-year warranties are available. The reliability and cost of operation of these units is equal to that of photovoltaic systems. Wind EnergyWind energy is a form of solar energy produced by uneven heating of the Earths surface. Wind resources are best along coastlines, on hills, and in the northern states, but usable wind resources can be found in most areas. As a power source wind energy is less predictable than solar energy, but it is also typically available for more hours in a given day. Wind resources are influenced by terrain and other factors that make it much more site specific than solar energy. In hilly terrain, for example, you and your neighbor are likely to have the exact same solar resource. But you could have a much better wind resource than your neighbor because your property is on top of the hill or it has a better exposure to the prevailing wind direction. Conversely, if your property is in a gully or on the leeward side of the hill, your wind resource could be substantially lower. In this regard, wind energy must be considered more carefully than solar energy.Wind energy follows seasonal patterns that provide the best performance in the winter months and the lowest performance in the summer months. This is just the opposite of solar energy. For this reason wind and solar systems work well together in hybrid systems. These hybrid systems provide a more consistent year-round output than either wind-only or PV-only systems. One of the most active market segments for small wind turbine manufacturers is PV-only system owners who are expanding their system with wind energy. Wind TurbinesMost wind turbines are horizontal-axis propeller type systems. Vertical-axis systems, such as the eggbeater like Darrieus and S-rotor type Savonius type systems, have proven to be more expensive. A horizontal-axis wind turbine consists of a rotor, a generator, a mainframe, and, usually, a tail. The rotor captures the kinetic energy of the wind and converts it into rotary motion to drive the generator. The rotor usually consists of two or three blades. A three blade unit can be a little more efficient and will run smoother than a two blade rotor, but they also cost more. The blades are usually made from either wood or fiberglass because these materials have the needed combination of strength and flexibility (and they dont interfere with television signals!).The generator is usually specifically designed for the wind turbine. Permanent magnet alternators are popular because they eliminate the need for field windings. A low speed direct drive generator is an important feature because systems that use gearboxes or belts have generally not been reliable. The mainframe is the structural backbone of the wind turbine and it includes the slip-rings that connect the rotating (as it points itself into changing wind directions) wind turbine and the fixed tower wiring. The tail aligns the rotor into the wind and can be a part of the over speed protection.A wind turbine is a deceptively difficult product to develop and many of the early units were not very reliable. A PV module is inherently reliable because it has no moving parts and, in general, one PV module is as reliable as the next. A wind turbine, on the other hand, must have moving parts and the reliability of a specific machine is determined by the level of skill used in its engineering and design. In other words, there can be a big difference in reliability, ruggedness, and life expectancy from one brand to the next. This is a lesson that often seems to escape dealers and customers who are used to working with solar modules. TowersA wind turbine must have a clear shot at the wind to perform efficiently. Turbulence, which both reduces performance and works the turbine harder than smooth air, is highest close to the ground and diminishes with height. Also, wind speed increases with height above the ground. As a general rule of thumb, you should install a wind turbine on a tower such that it is at least 30 ft above any obstacles within 300 ft. Smaller turbines typically go on shorter towers than larger turbines. A 250 watt turbine is often, for example, installed on a 30-50 ft tower, while a 10 kW turbine will usually need a tower of 80-120 ft. We do not recommend mounting wind turbines to small buildings that people live in because of the inherent problems of turbulence, noise, and vibration.The least expensive tower type is the guyed-lattice tower, such as those commonly used for ham radio antennas. Smaller guyed towers are sometimes constructed with tubular sections or pipe. Self-supporting towers, either lattice or tubular in construction, take up less room and are more attractive but they are also more expensive. Telephone poles can be used for smaller wind turbines. Towers, particularly guyed towers, can be hinged at their base and suitably equipped to allow them to be tilted up or down using a winch or vehicle. This allows all work to be done at ground level. Some towers and turbines can be easily erected by the purchaser, while others are best left to trained professionals. Anti-fall devices, consisting of a wire with a latching runner, are available and are highly recommended for any tower that will be climbed. Aluminum towers should be avoided because they are prone to developing cracks. Towers are usually offered by wind turbine manufacturers and purchasing one from them is the best way to ensure proper compatibility.Remote Systems EquipmentThe balance-of-systems equipment used with a small wind turbine in a remote application is essentially the same as used with a PV system. Most wind turbines designed for battery charging come with a regulator to prevent overcharge. The regulator is specifically designed to work with that particular turbine. PV regulators are generally not suitable for use with a small wind turbine because they are not designed to handle the voltage and current variations found with turbines. The output from the regulator is typically tied into a DC source center, which also serves as the connection point for other DC sources, loads and the batteries. For a hybrid system the PV and wind systems are connected to the DC source center through separate regulators, but no special controls are generally required. For small wind turbines a general rule-of-thumb is that the AH capacity of the battery bank should be at least six times the maximum renewables charging current, including any PV elements. The wind industry has had good experience using battery banks that are smaller than those typically recommended for PV applications.Being Your Own Utility CompanyThe federal PURPA regulations passed in 1978 allow you to interconnect a suitable renewable energy powered generator to your house or business to reduce your consumption of utility supplied electricity. This same law requires utilities to purchase any excess electricity production at a price (avoided cost) usually below the retail cost of electricity. In about a half-dozen states with net energy billing options small systems are allowed to run the meter backwards, so they get the full retail rate for excess production. Because of the high overhead costs to the utilities for keeping a few special hand-processed customer accounts, net energy billing is actually less expensive for them. These systems do not use batteries. The output of the wind turbine is made compatible with utility power using either a line-commutated inverter or an induction generator. The output is then connected to the household breaker panel on a dedicated breaker, just like a large appliance. When the wind turbine is not operating, or it is not putting out as much electricity as the house needs, the additional electricity needed is supplied by the utility. Likewise, if the turbine puts out more power than the house needs, the excess is instantaneously sold to the utility. In effect, the utility acts as a very big battery bank and the utility sees the wind turbine as a negative load. After over 200 million hours of interconnected operation we now know that small utility-interconnected wind turbines are safe, do not interfere with either utility or customer equipment, and do not need any special safety equipment to operate successfully.Hundreds of homeowners around the country who installed 4-12 kW wind turbines during the go-go tax credit days in the early 1980s now have everything paid for and enjoy monthly electrical bills of $8-30, while their neighbors have bills in the range of $100-200 per month. The problem, of course, is that these tax credits are long gone and without them most homeowners will find the cost of a suitable wind generator prohibitively expensive. A 10 kW turbine (the most common size for homes), for example, will typically cost $28,000-35,000 installed. For those paying 12 cents/kilowatt-hour or more for electricity in an area with an average wind speed of 10 mph or more (DOE Class 2), and with an acre or more of property (the turbines are big), a residential wind turbine is certainly worth considering. Payback periods will generally fall in the range of 8-16 years and some wind turbines are designed to last thirty years or more.PerformanceThe rated power for a wind turbine is not a good basis for comparing one product to the next. This is because manufacturers are free to pick the wind speed at which they rate their turbines. If the rated wind speeds are not the same then comparing the two products is very misleading. Fortunately, the American Wind Energy Association has adopted a standard method of rating energy production performance. Manufacturers who follow the AWEA standard will give information on the Annual Energy Output (AEO) at various annual average wind speeds. These AEO figures are like the EPA Estimated Gas Mileage for your car, they allow you to compare products fairly, but they dont tell you just what your actual performance will be (Your Performance May Vary).Wind resource maps for the US have been compiled by the Department of Energy. These maps show the resource by Power Classes that mean the average wind speed will probably be within a certain band. The higher the Power Class the better the resource. We say probably because of the terrain effects mentioned earlier. On open terrain the DOE maps are quite good, but in hilly or mountainous terrain they must be used with great caution. The wind resource is defined for a standard wind sensor height of 33 ft (10 m), so you must correct the average wind speed for wind tower heights above this height before using the AEO information supplied by the manufacturer. Wind turbine performance is also usually derated for altitude, just like an airplane, and for turbulence. Wind turbine manufacturers can usually provide computer-aided performance predictions for their turbines at virtually any site.As a rule of thumb wind energy should be considered if your average wind speed is above 8 mph (most, but not all, Class 1 and all other Classes) for a remote application and 10 mph (Class 2 or better) for a utility-interited application. If you live in an area that is not too hilly then the DOE wind resource map can be used to fairly accurately calculate the expected performance of a wind turbine at your site. In complex terrain a judgment on the sites exposure must be made to adjust the average wind speed used for this calculation. In most situations it is not necessary to monitor the wind speed with a recording anemometer prior to installing a small wind turbine. But in some situations it is worth spending $300-1,000 and waiting a year to perform a wind survey. Manufacturers and equipment dealers can help sort out these questions.How Wind Turbines are UsedInstalling a wind turbine is a bit more involved than installing solar panels, but they are still relatively easy to incorporate into your alternative energy system. The turbine needs to be mounted in an area free from obstructions to wind flow (nearby buildings, trees, etc.).Some smaller turbines can be mounted to the rooftop of your house, but vibrations from the turbine may be transferred to the frame of the building. Rooftop turbine mounts often come with rubber vibration dampers to minimize this problem. As a general rule however, the higher in the air you can get your wind turbine the more effective it will be, so independent, guyed towers are the recommended mounting system. The wide variety of available tower heights and styles makes it much more likely you will find a mounting kit to suit your needs.When installing the controls and wiring of a wind generator, it is important to understand two fundamental differences between wind turbines and solar panels:Current Recti
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小型风力发电机组动力结构设计-家用垂直风力发电机【CAD图纸+毕业论文】【答辩通过】
链接地址:https://www.renrendoc.com/p-363555.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!