零件图(4张).dwg
零件图(4张).dwg

振动筛设计【8张CAD图纸+毕业论文】【答辩通过】

收藏

压缩包内文档预览:
预览图
编号:363566    类型:共享资源    大小:621.60KB    格式:RAR    上传时间:2014-11-11 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
振动筛 设计 cad 图纸 毕业论文 答辩 通过
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

摘    要
振动筛的研究不断地向着标准化、系列化、通用化发展,并引入现代化设计手段,采用新材料、新技术、新工艺,其目的在于不断扩大筛机应用领域,满足国民经济建设发展的需要,并担当对外出口的任务。
本文所设计的振动筛的筛分物料为球磨机产品。该产品的大小不是很平均,为了做出更符合要求的物料就需要用振动筛来将球磨机产品进一步细分,将不符合要求的物料重新用球磨机磨小。经过这样的反复处理最终将物料全部做成符合要求的产品。本课题的振动筛为自同步双振动电机驱动的,其特点是结构简单、安装方便、成本低、容易操作及维护等。其筛箱为板梁铆焊组合结构,由主副侧板、管梁、入料挡板、出料板、筛板等组成,侧板选用低合金压力容器钢板,强度高、可焊性好,周边折弯,并在振动方向及沿纵向连接多根角钢,使侧板刚度大大增强,有利于强度的提高和噪音的降低。管梁由法兰盘、无缝钢管、加强槽钢等组成,重量轻、强度大,便于制造安装,具有互换性。加强槽钢上有T形孔,使用T形螺栓,便于筛板的安装维护,消除U形螺栓对管梁的磨损。工作原理:两台振动电机的型号相同,可以产生一种组合的直线振动。这种振动可以使输送槽体中的物料运动,并与筛面发生碰撞,使小于筛孔的物料透过,从而实现物料的几何分级,实现筛分。总体方案为:采用普通筛分法,振动形式为共振,运动轨迹为直线运动,激振方式为惯性式,隔振方式为一级隔振,隔振弹簧为金属螺旋式隔振弹簧。

关键词:振动筛; 筛箱; 振动电机


Abstract
The shaker research unceasingly to the standardization, the seriation, the universalized development, and the introduction modernization design method, uses the new material, the new technology, the new craft, its goal lies in unceasingly expands the sieve machine application domain, satisfies national economy construction the need to develop, and takes on the foreign exportation the duty.
Finally completely makes after such repeatedly processing the materi all tallies the request product. This topic shaker for self-synchronizing pair vibration motor-driven, Its characteristic is the structure simple, the installs convenient, the cost low, is easy to operate and the maintenance and so on. It sieves the box is board crossbeam riveting hitch welds built-up section, By host vice- side bar, Hollow beam, Enters the material back plate, Leaves material board, Sieves board and so on composition, The side bar selects the low-alloy pressure vessel steel plate, The intensity is high, The weldability is good, Peripheral knee bend, And in the vibration direction and along longitudinal connects themulti- roots angle steel, Causes the side bar rigidity big enhancement, Is advantageous to the intensity enhancement and noise reducing. Hollow beam by flange plate, Seamless steel pipe, Strengthens composition and so on channel steel, The weight light, the intensity is big, is advantageous for themanufacture installment, Has the interchangeability. Strengthens in the channel steel to have the T shape hole, Uses the T shape bolt, Is advantageous for screen board installs the maintenance, Eliminates the U shape bolt to the hollow beam attrition. Principle of work: Two vibrate the electrical machinery the model to be same, May have one kind of combination straight-line oscillation. This kind of vibration may cause in the transportation trough body thematerial movement, And has the collision with the screening surface, And has the collision with the screening surface, Thus realization material geometry graduation, Realization screening. The overall plan is: Uses the ordinary screening law, The vibration form for resonates, The path is the translation, Stirs up the strength vibration the way is the inertia type, The vibration isolation way is level of vibration isolations, The vibration isolation spring is the metal screw type vibrationisolation spring。

Keywords:the vibration screen; the box screen; the vibration electric machinery

目    录
摘    要 I
Abstract II
第1章 概述 1
1.1国内外现状 1
1.2 振动机械的用途和分类 1
1.2.1 振动机械的组成 2
1.2.2 振动机械的特点 2
1.2.4 振动机械的分类 3
第2章 主要问题及解决方案 5
2.1 振动筛降噪措施 5
2.2 常见故障及处理措施 5
2.2.1 筛分时筛子不下料或下料不畅 5
2.2.2 筛框断裂根 5
2.2.3 轴承过热 5
2.2.4 筛分的分级(根据筛分的目的) 6
第3章 直线振动细筛的结构、工作原理及总体方案的比较确定 7
3.1结构及工作原理 7
3.2直线型振动细筛的特点 7
3.3 各类筛分方法的比较确定 8
3.3.1 普通筛分方法 8
3.3.2 概率筛分方法 9
3.3.3 等厚筛分法 9
3.3.4 概率等厚筛分法 10
3.3.5 筛分方法的确定 10
3.4 振动形式的确定 10
3.4.1 非共振筛 10
3.4.2 共振筛 10
3.5 运动轨迹的确定 10
3.5.1 圆运动轨迹 10
3.5.2 直线运动轨迹 11
3.6激振方式的比较 11
3.6.1 弹性连杆式 11
3.6.2 电磁式 11
3.6.3 惯性式 12
3.6.4 激振方式的确定 12
第4章 其它零部件的选择 13
4.1隔振系统的选择 13
4.2筛箱及筛面 13
4.2.1筛箱 13
4.2.2筛面的比较选择 14
4.2.3 筛面的压紧装置 15
4.3支撑装置的选择 15
第5章 各部分设计计算 17
5.1运动学参数的选择计算 17
5.1.1 物料运动状态的选择 17
5.1.2 安装倾角的选择 17
5.1.3 振动方向角的选择 17
5.1.4 物料的平均速度 18
5.2工艺参数的确定 18
5.3动力学参数的选择计算 18
5.3.1工作机体的质量 18
5.3.2物料的结合质量 19
5.3.3 隔振系统的频率比及隔振弹簧刚度 19
第6章 结论 20
参考文献 21
致   谢 23

第1章 概述
1.1国内外现状
目前国内筛机产品种类有圆振动筛、直线振动筛、椭圆振动筛、高频振动筛、弧形筛、等厚筛、概率筛、冷矿筛、热矿筛、节肢筛等,产品已在冶金、矿山、煤炭、轻工等许多行业得到广泛的应用,基本上满足了国内国民经济建设的需要。据2002年行业调查了解,全国筛分机械制造企业已多达300余家,从所有制来看,除国营、集体、股份制外,还有外资和合资企业,特别是股份制、民营企业发展很快。全国筛分机械市场年产值约为5亿元左右,今年又有大的增长,年产值超过1500万元以上的企业有10余家。由于我国东部经济发展较快,筛分机械制造企业也主要分布在东北、华北、华东和中南地区,尤其是鞍山新乡地区,这两个地区的筛分机械产值约占全国总产值的50%左右,可是在西部地区,还没有一家像样的筛分设备制造企业。我国筛分设备制造企业虽然很多,但是真正具备实力的很少。目前全国具有独立研究开发新产品能力的企业不多,大约有3~4家,每年能创新开发几个新产品,而大多数企业仍是生产常规较为陈旧的产品。在产品设计和制造水平上,全国大约只有4~5家企业的机械装备和工艺水平真正具备制造较大筛分机械的能力。德国申克和KHD公司是国际著名的筛分机械制造企业,他们的新产品开发是和工程设计同时进行的:首先要对被筛物料的物理、化学性质以及在工艺流程中所需达到的要求进行分析,选择合理的技术参数、进行模拟样机试制、进行必要的设计计算、工作图设计、产品试制、检验、服务、工艺试验、跟踪服务、产品改进设计、定型等一系列程序,最后实现交钥匙工程[1]。


内容简介:
连杆机构连杆存在于车库门装置,汽车擦装置,齿轮移动装置中。它是一给予很少关注的机械工程学的组成部分。联杆是具有两个或更多运动副元件的刚性机构,用它的连接是为了传递力或运动。在每个机器中,在运动期间,联杆或者占据一相对于地面的固定位置或者作为一个整体来承载机床。这些连杆是机器主体被称为固定连杆。基于由循环的或滑动的分界面的元件连接的布局被称作连接。这类旋转的和菱形的连接机构被称作低副。高副基于接触点或弯曲分界面的。低副的例子包括铰链循环的轴承和滑道以及万向接头。高副的例子包括通信区主站和齿轮。动力分析得到,根据机件几何学有利条件研究是一特别的机构,它是识别输入角速度和角加速度等等的运动。运动合成作用是处理机构设计到完成完成要求的任务。这里, 两者的选择类型和新的机制尺寸可能是运动学的综合部份。平面的、空间性的和球面运动机构平面的机构是其中全部的点描述平面曲线是间隔和全部平面是共面的, 大多数连杆和机构被设计成这样,例如刨床体系。主要的理由是这个平面的体系对工程师来说更方便。计算机综合法对工程师来说空间性的装置会有更多的麻烦。平面低副机构被称作二维的连接装置。平面的连接仅仅包括旋转的和一对等截面的使用。空间机构没有对相对运动的点的限制。平面的和球面运动机构是亚垫铁等锻工工具的空间机构。空间机构的连接不是被认为这时候被记录。球面运动机构有一接触点接通各个连杆,它是不动的并且平稳点在所有当中联杆场中工作。在所有机件当中,运动是同心并且由他们的盲区接通球面表现出来,它是集中于普遍的定位。空间机构的连接认为不是这时候被记录。可动性连杆在运动中所表现的自由度数是一个很重要的问题。为了使装置被送到指定位置应控制独立的活动自由度。它可能是由杆的数量和连接方式决定的。一自由连杆通常有3个自由度(x , y, )。由于自由度数的限制在n连杆装置中,通常把一个杆固定。自由度数=3(n-1).连接二连杆的机构有两个自由度约束的增加。有两个约束的二连杆连接,其中一个自由度是来约束这个系统的。有一个约束的连杆机构的自由度是j1,有两个约束的连杆机构的自由度是j2。这个系统的自由度数可表示为 m = 3 (n-1) - 2 j 1 - j 2以下为可动的连杆机构装置的示例0是这个体系中可动的机构。系统中仅仅由一连杆的位置固定可以将可动1安装在固定位置。系统中需要一个可动的2与两个连杆来确定连接位置。这是个一般的规则,但也存在例外,它可以作为一个可动性连杆布局的很有用的参考。格朗定律当设计一连接连杆时,在连续地旋转连杆处,例如由一马达输入时,连线可以自由地旋转完全运行驱动是很重要的。如果连杆锁在任一点则方案不会工作。四杆联动机构和grashof定律对这个情况进行提供了简单的测验。格朗的定律如下:b(短的链环)+c(长的链环)a+d四个典型的四连杆机构注意:如果非之上情况则只有连杆滑块机构可行。四连杆机构的优点四连杆机构按比例增大了施加在主动杆上的输入扭矩。可以证明其正比例系数是Sin( )其中是c、d 两杆之间的角度。反比例于sin( )。其中是b、c两杆之间的角度。这些角度不恒定,因此很明显,机构的优点是规律性的变幻。 如下图显示当角度=0 o或则=180 o时接近于无限增矩机构。这些位置是极限位置, 这些位置使四连杆机构可以用于夹具机构。角被叫做“传输角度”。当传输角度的sin值趋于无限小时,机构的增距接近于0。在这样的情况下连杆容易因为很小的摩擦而产生自锁。一般来说,当使用四连杆机构时,避免采用低于400到500的传输角度。弗洛伊德方程这些方程提供了确定内外连杆位置及连杆长度的简单代数学方法。假设四连杆机构如下所示:四连杆的位置矢量如下:l 1 + l 2 + l 3 + l 4 = 0 水平位移方程:l 1 cos 1 + l 2 cos 2 + l 3 cos 3 + l 4 cos 4 = 0 垂直位移方程:l 1 sin 1 + l 2 sin 2 + l 3 sin 3 + l 4 sin 4 = 0 假设 1 = 1800 then sin 1 = 0 and cos 1 = -1 Therefore 而l 1 + l 2 cos 2 + l 3 cos 3 + l 4 cos 4 = 0 l 2 sin 2 + l 3 sin 3 + l 4 sin 4 = 0方程两边同时消去l 3:l 32 cos 2 3 = (l 1 - l 2 cos 2 - l 4 cos 4 ) 2 l 32 sin 2 3 = ( - l 2 sin 2 - l 4 sin 4) 2由以上两式可得如下关系cos ( 2 - 4 ) = cos 2 cos 4 + sin 2sin 4 ) and sin2 + cos2 = 1结果如下所示弗洛伊德方程得出这样的参数关系结论K 1 cos 2 + K2 cos 4 + K 3 = cos ( 2 - 4 )K1 = l1 / l4 K2 = l 1 / l 2 K3 = ( l 32 - l 12 - l 22 - l 2 4 ) / 2 l 2 l 4 这个方程符合四连杆机构的有限元分析。如果外连杆机构中的三个参量已知,那么可以由公式得出其他连杆的位置与长度参数。连杆的速度矢量杆上一点的速度必须与杆的轴向垂直否则连杆的长度将产生变化。在B下的连杆速度为vAB = .AB,方向垂直于AB杆,速度矢量图如下: 考虑到下面四连杆机构的实例,速度矢量图表示如下:1)A和D相连并固定,相对加速度=0,A和D位于同一点2)B点相对A点加速是vAB = .AB垂直于AB杆。3)C点相对D点速度通过D点垂直于CD杆。4)P店读速度由速度矢量图和比例bp/bc = BP/BC获得。速度矢量简图如下所示:连杆上滑块的速度认为B滑块绕着A在连杆上滑动,滑块瞬间位移到B点。B点的速度为A = .AB并垂直于线的方向。其链接滑块和速度矢量图如下所示: 连杆的加速矢量杆上一点相对另一点的加速矢量由两部分组成:1)向心加速度由其角速度和连杆长度决定为 2.L2)角加速度由连杆角加速度度决定以下图表显示如何到构造一矢量图表下图显示如何构造单连杆机构的加速矢量向心加速度ab = 2.AB方向指向圆心,角加速度为bb = . AB方向垂直于杆。下图显示如何构造四连杆机构的加速矢量画法1). A和D相连并固定,相对加速度=0(a,d同)2). B点相对A点加速在上面的杆上画出3). B点相对C点向心加速度为:B = v 2CB,方向指向B。4). B点相对C点角加速度未知但是方向已知5). C点相对D点向心加速度为:D = v 2CD, 与d( dc2)方向相同。6). C点相对D点角加速度未知但是方向已知7). 通过线c1 和c 2的交叉点找出cP点的速度由比例bp/bc=bp/bc获得,且其绝对加速度为P = ap。下面的图表显示其构造方式和转杆上滑块的加速矢量图。两个滑块之间呈dw角。连杆上点的速度与B点变化一致,变化范围为.r =a b 1 到 ( + d) (r +dr) = a b 2b1b2速度的变化分为沿杆方向的r d 及沿其切线方向的dr + r d。滑块上B点的速度与连杆上相关点的变化有关v = a b 3 to v + dv = a b 4.沿着dv与v d 方向速度的变化= b3b4 。在速度切线方向总变化= dv- r d 加速度 = dv / dt = r d / dt = a - 2 r 速度在正切方向总变化= v d + dr + r 正切加速= v d / dt + dr/dt + r d / dt = v + v + r = r + 2 v 加速矢量图表显示如下:注: 其中2 v代表块的正切加速度。每当链接滑通过一个旋转的块,相对一致点沿着一旋转链环一块滑动。- 7 -Link mechanismLinkages include garage door mechanisms, car wiper mechanisms, gear shift mechanisms.They are a very important part of mechanical engineering which is given very little attention.A link is defined as a rigid body having two or more pairing elements which connect it to other bodies for the purpose of transmitting force or motion . In every machine, at least one link either occupies a fixed position relative to the earth or carries the machine as a whole along with it during motion. This link is the frame of the machine and is called the fixed link.An arrangement based on components connected by rotary or sliding interfaces only is called a linkage. These type of connections, revolute and prismatic, are called lower pairs. Higher pairs are based on point line or curve interfaces. Examples of lower pairs include hinges rotary bearings, slideways , universal couplings. Examples of higher pairs include cams and gears.Kinematic analysis, a particular given mechanism is investigated based on the mechanism geometry plus factors which identify the motion such as input angular velocity, angular acceleration, etc. Kinematic synthesis is the process of designing a mechanism to accomplish a desired task. Here, both choosing the types as well as the dimensions of the new mechanism can be part of kinematic synthesis.Planar, Spatial and Spherical MechanismsA planar mechanism is one in which all particles describe plane curves is space and all of the planes are co-planar.The majority of linkages and mechanisms are designed as planer systems. The main reason for this is that planar systems are more convenient to engineer. Spatial mechanisma are far more complicated to engineer requiring computer synthesis. Planar mechanisms ultilising only lower pairs are called planar linkages. Planar linkages only involve the use of revolute and prismatic pairsA spatial mechanism has no restrictions on the relative movement of the particles. Planar and spherical mechanisms are sub-sets of spatial mechanisms.Spatial mechanisms / linkages are not considered on this pageSpherical mechanisms has one point on each linkage which is stationary and the stationary point of all the links is at the same location. The motions of all of the particles in the mechanism are concentric and can be repesented by their shadow on a spherical surface which is centered on the common location.Spherical mechanisms /linkages are not considered on this pageMobilityAn important factor is considering a linkage is the mobility expressed as the number of degrees of freedom.The mobility of a linkage is the number of input parameters which must be controlled independently in order to bring the device to a set position.It is possible to determine this from the number of links and the number and types of joints which connect the links.A free planar link generally has 3 degrees of freedom (x , y, ). One link is always fixed so before any joints are attached the number of degrees of freedom of a linkage assembly with n links = DOF = 3 (n-1) Connecting two links using a joint which has only on degree of freedom adds two constraints. Connecting two links with a joint which has two degrees of freedom include 1 restraint to the systems. The number of 1 DOF joints = say j 1 and the number of joints with two degrees of freedom = say j 2. The Mobility of a system is therefore expressed as mobility = m = 3 (n-1) - 2 j 1 - j 2Examples linkages showing the mobility are shown below. A system with a mobility of 0 is a structure. A system with a mobility of 1 can be fixed in position my positioning only one link. A system with a mobility of 2 requires two links to be positioned to fix the linkage position.This rule is general in nature and there are exceptions but it can provide a very useful initial guide as the the mobility of an arrangement of links.Grashofs LawWhen designing a linkage where the input linkage is continuously rotated e.g. driven by a motor it is important that the input link can freely rotate through complete revolutions. The arrangement would not work if the linkage locks at any point. For the four bar linkage Grashofs law provides a simple test for this conditionGrashofs law is as follows: For a planar four bar linkage, the sum of the shortest and longest links cannot be greater than the sum of the remaining links if there is to be continuous relative rotation between two members.Referring to the 4 inversions of a four bar linkage shown below .Grashofs law states that one of the links (generally the shortest link) will be able to rotate continuously if the following condition is met. b (shortest link ) + c(longest link) a + dFour Inversions of a typical Four Bar LinkageNote: If the above condition was not met then only rocking motion would be possible for any link.Mechanical Advantage of 4 bar linkageThe mechanical advantage of a linkage is the ratio of the output torque exerted by the driven link to the required input torque at the driver link. It can be proved that the mechanical advantage is directly proportional to Sin( ) the angle between the coupler link(c) and the driven link(d), and is inversely proportional to sin( ) the angle between the driver link (b) and the coupler (c) .These angles are not constant so it is clear that the mechanical advantage is constantly changing.The linkage positions shown below with an angle = 0 o and 180 o has a near infinite mechanical advantage.These positions are referred to as toggle positions. These positions allow the 4 bar linkage to be used a clamping tools.The angle is called the transmission angle. As the value sin(transmission angle) becomes small the mechanical advantage of the linkage approaches zero. In these region the linkage is very liable to lock up with very small amounts of friction.When using four bar linkages to transfer torque it is generally considered prudent to avoid transmission angles below 450 and 500.In the figure above if link (d) is made the driver the system shown is in a locked position.The system has no toggle positions and the linkage is a poor design Freudensteins EquationThis equation provides a simple algebraic method of determining the position of an output lever knowing the four link lengths and the position of the input lever. Consider the 4 -bar linkage chain as shown below. The position vector of the links are related as follows l 1 + l 2 + l 3 + l 4 = 0 Equating horizontal distances l 1 cos 1 + l 2 cos 2 + l 3 cos 3 + l 4 cos 4 = 0 Equating Vertical distances l 1 sin 1 + l 2 sin 2 + l 3 sin 3 + l 4 sin 4 = 0 Assuming 1 = 1800 then sin 1 = 0 and cos 1 = -1 Therefore - l 1 + l 2 cos 2 + l 3 cos 3 + l 4 cos 4 = 0 and . l 2 sin 2 + l 3 sin 3 + l 4 sin 4 = 0 Moving all terms except those containing l 3 to the RHS and Squaring both sides l 32 cos 2 3 = (l 1 - l 2 cos 2 - l 4 cos 4 ) 2l 32 sin 2 3 = ( - l 2 sin 2 - l 4 sin 4) 2Adding the above 2 equations and using the relationshipscos ( 2 - 4 ) = cos 2 cos 4 + sin 2sin 4 ) and sin2 + cos2 = 1the following relationship results.Freudensteins Equation results from this relationship as K 1 cos 2 + K2 cos 4 + K 3 = cos ( 2 - 4 )K1 = l1 / l4 K2 = l 1 / l 2 K3 = ( l 32 - l 12 - l 22 - l 2 4 ) / 2 l 2 l 4 This equation enables the analytic synthesis of a 4 bar linkage. If three position of the output lever are required corresponding to the angular position of the input lever at three positions then this equation can be used to determine the appropriate lever lengths using three simultaneous equations. Velocity Vectors for LinksThe velocity of one point on a link must be perpendicular to the axis of the link, otherwise there would be a change in length of the link.On the link shown below B has a velocity of vAB = .AB perpendicular to A-B. The velocity vector is shown. Considering the four bar arrangement shown below. The velocity vector diagram is built up as follows: As A and D are fixed then the velocity of D relative to A = 0 a and d are located at the same point The velocity of B relative to a is vAB = .AB perpendicular to A-B. This is drawn to scale as shown The velocity of C relative to B is perpedicular to CB and passes through b The velocity of C relative to D is perpedicular to CD and passes through d The velocity of P is obtained from the vector diagram by using the relationship bp/bc = BP/BC The velocity vector diagram is easily drawn as shown. Velocity of sliding Block on Rotating LinkConsider a block B sliding on a link rotating about A. The block is instantaneously located at B on the link.The velocity of B relative to A = .AB perpendicular to the line. The velocity of B relative to B = v. The link block and the associated vector diagram is shown below. Acceleration Vectors for LinksThe acceleration of a point on a link relative to another has two components: 1) the centripetal component due to the angular velocity of the link. 2.Length 2) the tangential component due to the angular acceleration of the link The diagram below shows how to to construct a vector diagram for the acceleration components on a single link.The centripetal acceleration ab = 2.AB towards the centre of rotation. The tangential component bb = . AB in a direction perpendicular to the link. The diagram below shows how to construct an acceleration vector drawing for a four bar linkage. For A and D are fixed relative to each other and the relative acceleration = 0 ( a,d are together ) The acceleration of B relative to A are drawn as for the above link The centripetal acceleration of C relative to B = v 2CB and is directed towards B ( bc1 ) The tangential acceleration of C relative to B is unknown but its direction is known The centripetal acceleration of C relative to D = v 2CD and is directed towards d( dc2) The tangential acceleration of C relative to D is unknown but its direction is known. The intersection of the lines through c1 and c 2 locates c The location of the acceleration of point p is obtained by proportion bp/bc = BP/BC and the absolute acceleration of P = ap The diagram below shows how to construct and acceleration vector diagram for a sliding block on a rotating link. The link with the sliding block is drawn in two positions.at an angle dThe velocity of the point on the link coincident with B changes from .r =a b 1 to ( + d) (r +dr) = a b 2 The change in velocity b1b2has a radial component r d and a tangential component dr + r d The velocity of B on the sliding block relative to the coincident point on the link changes from v = a b 3 to v + dv = a b 4.The change in velocity = b3b4 which has radial components dv and tangential components v d The total change in velocity in the radial direction = dv- r d Radial acceleration = dv / dt = r d / dt = a - 2 r The total change in velocity in the tangential direction = v d + dr + r Tangential acceleration = v d / dt + dr/dt + r d / dt = v + v + r = r + 2 v The acceleration vector diagram for the block is shown belowNote : The term 2 v representing the tangential acceleration of the block relative to the coincident point on the link is called the coriolis component and results whenever a block slides along a rotating link and whenever a link slides through a swivelling block- 9 -一、课题的目的、意义、国内外现状及发展方向1、目的该振动筛的筛分物料为球磨机产品。该产品的大小不是很平均,为了做出更符合要求的物料就需要用振动筛来将球磨机产品进一步细分,将不符合要求的物料从新用球磨机磨小。经过这样的反复处理最终将物料全部做成符合要求的产品1。2、意义矿山机械产品属于小批量、多品种、使用面广的机械设备,按用途可分为采掘设备、提升设备、矿用车辆、破碎粉磨设备、筛分设备、洗选设备及焙烧设备等七大类2 。矿山机械为重机装备,是为基础原材料工业服务的,是我国机械工业中的一个重要分支。长期以来,矿山机械在开发我国矿业资源、促进矿业经济发展、实现矿山生产现代化的进程中起着十分重要、不可替代的支撑作用。而矿业资源的开发、利用主要是通过矿山机械来实现、完成的。因此,矿山机械的先进性与现代化,在一定程度上反映了一个国家的工业化水平。可见,矿山机械对于国民经济的发展有着特别重要的地位和作用3 。筛分设备在矿山机械中占有重要地位,它的发展不仅仅代表着中国矿山机械的发展,它还代表着中国国力的增强,着一个国家的基础工业的实力和工业科技水平4。3、国内外现状目前国内筛机产品种类有圆振动筛、直线振动筛、椭圆振动筛、高频振动筛、弧形筛、等厚筛、概率筛、冷矿筛、热矿筛、节肢筛等,旋振筛和各种振动给料机械,多达50多个系列近1000种规格,产品已在冶金、矿山、煤炭、轻工等许多行业得到广泛的应用,基本上满足了国内国民经济建设的需要5。据2002年行业调查了解,全国筛分机械制造企业已多达300余家,从所有制来看,除国营、集体、股份制外,还有外资和合资企业,特别是股份制、民营企业发展很快。全国筛分机械市场年产值约为5亿元左右,今年又有大的增长,年产值超过1500万元以上的企业有10余家6 。由于我国东部经济发展较快,筛分机械制造企业也主要分布在东北、华北、华东和中南地区,尤其是鞍山新乡地区,这两个地区的筛分机械产值约占全国总产值的50左右,可是在西部地区,还没有一家像样的筛分设备制造企业。我国筛分设备制造企业虽然很多,但是真正具备实力的很少。目前全国具有独立研究开发新产品能力的企业不多,大约有34家,每年能创新开发几个新产品,而大多数企业仍是生产常规较为陈旧的产品。在产品设计和制造水平上,全国大约只有45家企业的机械装备和工艺水平真正具备制造较大筛分机械的能力7。德国申克和K H D公司是国际著名的筛分机械制造企业,他们的新产品开发是和工程设计同时进行的:首先要对被筛物料的物理、化学性质以及在工艺流程中所需达到的要求进行分析,选择合理的技术参数、进行模拟样机试制、进行必要的设计计算、工作图设计、产品试制、检验、服务、工艺试验、跟踪服务、产品改进设计、定型等一系列程序,最后实现交钥匙工程8。4、发展方向(1)深入研究新的筛分理论和技术2002年,中国矿大机械厂为解决大型振动筛强度问题,提出了超静定网梁结构理论并使用成功,获得国家专利。最近,新乡威猛集团将12台2m3m的节肢筛组合在一起,形成了目前国内最大的7.2m振动筛,用于选煤系统的分级和脱水、脱介,效果很好。同样,中国科技大学为铁法矿务局晓青矿研制了筛框不动、筛网振动的大型振动筛9。(2)引入现代化设计手段,采用新材料、新技术、新工艺对现有的筛分机械进行运动分析和结构改进,引入现代化设计手段,采用优化设计,计算机辅助设计,用计算机对筛分结构强度进行计算,提高设计的可靠性;建立振动筛试验台,对筛机产品进行检测。全面推广使用新材料、新技术新工艺。对振动机械用的钢材、轴承、弹簧、筛网进行专门研究,筛面应从金属筛网向非金属筛网发展,应用橡胶筛板、聚氨酯筛网、弹性杆筛面;支承元件应采用橡胶弹簧和复合弹簧;推广环槽铆钉和高强度螺栓联接10。(3)向标准化、系列化、通用化发展提高三化水平,这是便于设计、组织专业生产和保证质量的途径。有些零部件如标准化、通用化了,组织专业化生产,可大大降低成本,提高企业效益。4.5强化筛机技术参数根据不同用途研制新筛机。发展大型、重型、超重型筛分设备,筛机振动筛强度可达5.4以上,筛分面积向27m2以上发展(德国一家筛子技术公司曾生产5mllm、筛分面积达55m的筛机),提高筛机的处理能力和承载能力11。(4)不断扩大筛机应用领域根据不同用途,研制出各种不同型式的筛机,目前,国内对于细和超细物料的分级,含水分7-13粘性物料的分级还存在问题。重机网曾联系国内外需要100目以下,生产能力为15t/h的细筛,国内就没厂家能接,我们应发展特殊用途筛分设备,满足国民经济建设发展的需要,并担当对外出口的任务12。二、课题主要研究内容1、振动筛分的基本原理直线振动筛(直线筛)工作原理:振动筛工作时,两电机同步反向放置使激振器产生反向激振力,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,从而完成物料筛分作业13。2、振动筛总体方案的比较与确定经过仔细的研究后选择下列性能参数的方案:筛面尺寸1000X2000,筛面层数1,网孔尺寸2-200,产量21t/h,能耗0.74kw,振幅2mm。3、主要零件选择方案的比较与确定主要螺栓、防撞击垫片等均采用国家标准,以减少制作成本。三、主要问题及解决方案1、振动筛降噪措施紧固振动筛上的所有部件,特别是需要经常更换的筛板,避免由于个别部件的松动而产生的额外振动;将冲孔钢筛板更换为弹性模量小、冲击噪声低的聚氨酯筛板或者橡胶筛板;在筛箱的侧板、入料给料口、排料口和接料底盘内加贴橡胶板,这样可以有效地抑制侧板的高频振动,减少辐射噪声;采用柔性辐板齿轮来代替钢齿轮,即在齿轮的辐板上利用橡胶弹性体传递扭矩,吸收齿轮啮入、啮出所造成的振动;用橡胶弹簧替代钢制弹簧,以减少冲击;在激振器的体外加装软式隔声罩;对轴承的内外套之间加以阻尼处理,轴承的滚动体可以制作成空心滚动体或者在空心滚动体的内部加入阻尼材料,这样能够减小轴承的振动和降低轴承的噪声14。2、常见故障及处理措施(1)筛分时筛子不下料或下料不畅一是给煤溜槽与筛面之间有落差太小,应是其落差在400500mm之间。二是新更换或新安装的振动筛实际处理量达不到理论设计时的处理量,即无法满足生产要求,这时应提高筛子角度、加大激振力,如果还无法满足要求,就需要对筛面进行改造:将入料端的筛孔加大。还要注意的一点是给料槽宽度要适中,如果过窄,物料则不能均匀地分布于筛面的宽度方向上,筛子的筛分面积也不能合理有效利用,筛分效果将会受到影响15。(2)筛框断裂根据断裂力学的原理,筛框颤抖容易发生断裂,所以解决该问题的最佳办法就是加厚侧板,或者对激振器附近的侧板局部增加附板以增强整个筛体的刚性,这样筛框就不容易发颤和断裂了16。(3)轴承过热第一种最常见的原因是由于轴承径向游隙太小。由于振动筛上的轴承承载的负荷较大,频
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:振动筛设计【8张CAD图纸+毕业论文】【答辩通过】
链接地址:https://www.renrendoc.com/p-363566.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!