




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲 函数的单调性与最值 可编辑 1 1 函数的单调性的定义 设函数y f x 的定义域为A 区间I A 如果对于区间I内的任意两个值x1 x2 当x1 x2时 都有 那么就说y f x 在区间I上是单调增函数 I称为y f x 的 如果对于区间I内的任意两个值x1 x2 当x1 x2时 都有 那么就说y f x 在区间I上是单调减函数 I称为y f x 的 单调增区间 f x1 f x2 单调减区间 f x1 f x2 2 可编辑 2 用导数的语言来描述函数的单调性设函数y f x 如果在某区间I上 那么f x 为区间I上的增函数 如果在某区间I上 那么f x 为 区间I上的减函数 f x 0 f x 0 3 函数的最大 小 值设函数y f x 的定义域为A 如果存在定值x0 A 使得对于任意x A 有 恒成立 那么称f x0 为y f x 的最大值 如果存在定值x0 A 使得对于任意x A 有 恒成立 那么称f x0 为y f x 的最小值 f x f x0 f x f x0 3 可编辑 A k 1 函数y x2 6x的减区间是 D A 2 C 3 B 2 D 3 2 函数y 2k 1 x b在实数集上是增函数 则 A 12 B k 12 C b 0 D b 0 4 可编辑 3 已知函数f x 的值域是 2 3 则函数f x 2 的值域为 D A 4 1 C 4 1 0 5 B 0 5 D 2 3 单调减区间是 0 5 指数函数y a 1 x在 上为减函数 则实数a 的取值范围为 1 a 2 4 若函数f x m 1 x2 mx 3 x R 是偶函数 则f x 的 5 可编辑 例1 已知函数f x x2 x 0 a R 考点1利用定义判断函数的单调性 ax 1 判断函数f x 的奇偶性 2 若f x 在区间 2 是增函数 求实数a的取值范围 6 可编辑 当a 0时 f x 既不是奇函数也不是偶函数 解 1 当a 0时 f x x2为偶函数 7 可编辑 8 可编辑 互动探究 2xx 1 在区间 0 1 上 1 试用函数单调性的定义判断函数f x 的单调性 9 可编辑 考点2利用导数判断函数的单调性 函数 在区间 6 上为增函数 试求实数a的取值范围 解题思路 本题可用分离参数的方法结合不等式恒成立问题求解 也可求出整个函数的递增 减 区间 再用所给区间是所求区间的子区间的关系求解 10 可编辑 解析 函数f x 的导数为f x x2 ax a 1 令f x 0 解得x 1或x a 1 当a 1 1即a 2时 函数f x 在 1 上为增函数 不合题意 当a 1 1 即a 2时 函数f x 在 1 上为增函数 在 1 a 1 内为减函数 在 a 1 上为增函数 依题意应有 当x 1 4 时 f x 0 当x 6 时 f x 0 所以4 a 1 6 解得5 a 7 所以a的取值范围是 5 7 11 可编辑 互动探究 mf x 0恒成立 则实数m的取值范围是 m 1 12 可编辑 2020 1 4 13 考点3函数的最值与值域例3 求下列函数的值域 14 可编辑 程 用判别式可求值域 也可把函数解析式化成A A 解题思路 关于x的一次分式函数 可通过求关于x的方程在定义域内有解的条件来求得值域 也可以经过变形 分离常量 观察得出结果 关于有理分式函数 去分母化成关于x的二次方 B x x 1 B是常数 的形式来求值域 可用换元法将无理函数化为有理函数或将已知等式化成关于x的二次方程 用判别式求函数的值域 15 可编辑 16 可编辑 17 可编辑 18 可编辑 19 可编辑 20 可编辑 互动探究 3 求下列函数的值域 21 可编辑 22 可编辑 易错 易混 易漏6 求函数的单调区间时没有考虑定义域例题 2010年广东珠海北大希望之星实验学校 函数f x log2 4x x2 的单调递减区间是 A 0 4 B 0 2 C 2 4 D 2 正解 由4x x2 0得0 x 4 又由u 4x x2 x 2 2 4知函数u在 2 4 上是减函数 根据复合函数的单调性知函数f x log2 4x x2 的单调递减区间是 2 4 故选C 失误与防范 易忽略x需满足4x x2 0这个条件 C 23 可编辑 求函数值域的常用方法有 配方法 分离变量法 单调性法 图象法 换元法 不等式法等 无论用什么方法求函数的值域 都必须考虑函数的定义域 24 可编辑 有的函数既无最大值也无最小值 如y 2 并不是所有的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年郑州市第九十九中学招聘公益性岗位工作人员21名模拟试卷及参考答案详解1套
- 2025年4月份贵州遵义市习水县招聘城镇公益性岗位人员考前自测高频考点模拟试题及答案详解(必刷)
- 2025年宣城市中心医院第一批次招聘22人考前自测高频考点模拟试题有完整答案详解
- 商业秘密保密协议书
- 处置废矿物油企业招聘业务员合同6篇
- 2025年汽车零部件再制造产业市场供需矛盾与解决方案报告
- 2025年下半年甘肃省事业单位招聘分类考试笔试临夏考区考前自测高频考点模拟试题及答案详解一套
- 2025年环境监测智能化数据质量控制与城市空气质量改善策略报告
- 土石方工程运输合同13篇
- 3.5 摆的快慢五年级上册科学同步教案(教科版)
- T/SFABA 1-2016食品安全团体标准天然食品用香精
- 返还房产协议书范本
- 幼儿园小班科学公开课《美丽的菊花》课件
- DBJ50-T-200-2024 建筑桩基础技术标准
- 线下股份协议书范本
- 艺术教育自考题库及答案
- 预防医学专业简介
- 食品安全月调度会议
- 《系统柜介绍与使用》课件
- 2023《广东省建设工程消防设计审查疑难问题解析》
- 《中医心理学》课件
评论
0/150
提交评论