说明书副本.pdf

双辊连铸机总体及主传动系统设计【优秀3+2张CAD图纸】

收藏

压缩包内文档预览:(预览前20页/共59页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:368547    类型:共享资源    大小:8.76MB    格式:RAR    上传时间:2014-11-27 上传人:QQ14****9609 IP属地:陕西
45
积分
关 键 词:
双辊连铸机 主传动系统 连铸机
资源描述:

双辊连铸机主传动系统的设计【优秀3+2张CAD图纸】

【带外文翻译+43页@正文16900字】【详情如下】【需要咨询购买全套设计请加QQ1459919609 】.bat

中等厚度薄板连铸技术研究外文文献翻译@中英文翻译@外文翻译.doc

分齿箱总装图.dwg

分齿箱总装图.pdf

副本图纸

双辊连铸机主传动系统的设计.doc

总装图.dwg

总装图.pdf

说明书副本.pdf

目录

第 1 章 绪论1

第 2 章 双辊连铸机传动系统与分齿箱7

第 3 章 双辊连铸机主传动部分设计11

第 4 章 连续铸钢的经济效益分析38

结束语40

致谢41

参考文献42

第 1 章 绪论

1.1 国内外连铸技术的发展概况

连续铸钢由于与常规生产相比具有生产工序简化,金属收得率提高,能源消耗降低, 劳动条件得到改善和连铸坯质量好等优越性,因此,是当前钢铁行业中发展最快的技术 之一,现在,全世界的连铸比(见表 1.1)和连铸坯产量在不断增加,围绕连铸的新技 术,新工艺,新设备,在不断的开发成功并被加以广泛推广应用,连续铸钢已经成为钢 铁行业生产中必不可少的工艺环节,是否发展连铸技术以及技术水平的高低,生产进行 的如何已经成为衡量各个钢铁生产企业生产,技术,管理水平的标志之一。

从一九九五年美国亨特工程公司研制开发成功的第一台连铸轧机以来,世界上不少 国家也先后研制成功了一些不同形式的连铸轧机。比较典型的有法国 3C,联邦德国的 克虏柏。国内从六十年代初开始研制连续铸轧设备,到目前为止已经制造出了第四代。 1.2 双辊连铸机主传动系统比较

从设备的发展状况看,亨特和国产Ⅳ型采用了多辊矫直机,张力在卷曲机和矫直机 之间产生,对主机无影响,只单纯起卷曲,卷紧带材的作用。3C 和克虏柏取消了矫直 机,使主机直接与卷曲设备构成张力。3C 还取消了牵引机,通过实践得出,在主机与 卷曲机之间产生一定的张力,可使铸轧同类产品时减少一定的轧制力和粘辊程度,对卷 齐带材,减少带材擦伤也有好处,并且,3C 和克虏柏与亨特相比,可减少 2~3 米的系 列长度。

从机架结构上看,亨特、3C 和克虏柏均采用闭式机架,并且都有简易换辊装置, 这里克虏柏铸轧机又采用了一套液压倾翻机构,可使机架在换辊时与地面垂直。而国产 Ⅳ型采用开式机架,用天车吊出轧辊。这样虽然减少了换辊空间,取消了换辊装置,却 大大延长了换辊时间,降低了设备利用率,增大了劳动强度。3C 法成功地采用了立式 铸轧工艺,使轧辊的更换更加容易,简化了换辊装置。

在驱动方面,克虏柏采用了两套轧机驱动系统,它包括直接安装在两个轧辊轴颈上 的液压马达和行星齿轮箱。两个驱动系统即可联动又可单动。每个油马达即可输出最大 力矩又可使其相互间按比例输出力矩。与传统驱动方式相比,它结构紧凑,总轴向尺寸

大约减少了 30~40%,取消了带齿型接手和花键的复杂而昂贵的机—电系统。由于轧辊 与驱动装置一同调整,从而有效的减少了换辊时间。其缺点是上下辊分别驱动,增加了 两辊的同步控制。

参考文献

[1]齿轮手册编委会.齿轮手册.北京:机械工业出版社.2000.8.

[2]徐灏.机械设计手册.北京:机械工业出版社,1991.9.

[3]倪思康.双辊薄带连铸研究.全国连铸技术研讨会论文集.上海:1994.11. [4]熊毅刚.板坯连铸.冶金工业出版社.1994.

[5].连续铸钢手册.冶金工业出版社.1990.

[6]国外连铸连轧方法评述.中南矿冶学院科技情报室.1978年8 月.

[7]徐有荣等.液态铸轧低碳钢板的研究.钢铁出版社.1986.

[8]周明衡.减速器选用手册.北京:化学工业出版社.2002.4.

[9]赵家礼.电动机维修手册.北京:机械工业出版社.2003.

[10]卜炎.机械传动装置设计手册.北京:机械工业出版社.1998.12.

[11]王海文.轧钢机械设计.北京:机械工业出版社.1983.6.

[12]王建中.公差与制图技术手册.沈阳.辽宁科学技术出版社.1939.1


内容简介:
附录Technological Investigation on the Continuous Casting of Mid-Width Thin SlabsGAN Yong, ZHANG Bai Ting, ZHANG Hui, NI Man Sen and .JI Xiu QiuABSTRACT Continuous casting of thin slabs is a key state project for 7th and 8th fiveyear plans. On the basis of foundamental works, CISRI conducted the tests of 102 heats in Lanzhou Steel Works in the period of January 1991June 1992. Three slab assortments of 50900mm, 70900mm, 70500mm were examined. In June of 1992, 412 t steel of 46 heats were cast with the efficiency of 91. 3%. This-result meets the requirement of the state in this period. The mould, heft transfer, casting technology and factors influencing slabs qualities are investigated as well.KEY WORDS: mould, continuous casting of thin slab, technological properties1. IntroductionIt is a very important new technique which has been researched and developed recently in the world to cast thin slab continuously and transfer the slab directly to rolling mill. This technique has changed the traditional technology route of strip production with obvious advantages in terms of energy saving, lowering capital investment, productive cost ,metal lose and so on, thus it is suggested that it represents the trend of development of strip production. In comparison with the tradition alone, the productive cost and capital investment of thin slab casting line is reduced by 10%20% and 15%20%respectively. This technique is not suitable for revamping existing strip production line, but is very attractive for new steel works and medium, small enterprises to produce plate and strip. According to the literature the energy consumption per ton steel of thin slab casting line is62.8 kJ less than that of traditional one. The figure is to be reduced further when slab is hot charged and rolled directly. For thin slab itself, the advantages of thin slab casting can not be realized unless the slab is hot charged and rolled direct-1y due to small thickness and large surface.The key technique of thin slab castingdirect rolling route is the thin slab casting withthree core techniques: mould, submerged nozzle and mould powder. A breakthrough in these core techniques has been made during pilot testing. In this paper, the technological performance of thin slab caster and the study on mould shape, heat transfer, casting technology, the factors effecting slab quality, in particular, surface quality is described.4. Pilot Caster and Casting TechnologyThe caster at Lanzhou Steel Works is of verticalcurved type with a radius of 2m, metallurgical length of 4390mm. There are two types of moulds: mould of variable section for slabs of 70900 (mm), 50 900 (mm), mould of constant section for slab of 70500 (mm). The vibration amplitude is 3mm with a frequency of 0300cycle/min. The liquid steel for testing was delivered from an arc furnace of 5, in nominal capacity with a heat weight of about 10t. The tundish capacity is 4t. The main equipments and devices involved in the testing were: ladle, platform, tundish , tundish car, submerged nozzle, mould, vibration device, second cooling zone, pinch rollers, turn over device, straightening, cutting device, roller conveyer, dummy bar system, motor driving system and control system. The maximum casting speed is 4m/min. Steel grades 20MnSi, 16Mn and plain carbon steel were tested.The core parts of thin slab caster, which are characteristic for the caster, arc mould and submerged nozzle. The schematic view of the funnel type mould and nozzle is shown in figure 1 and 2.From figure 1, it can be seen, that the lower part of the mould is straight and which cross section determines the slab size. The opening of upper part is widening gradually to allow nozzle to be submerged. The design of such kind of mould is based on solidification of liquid steel and deformation of shell under the external force, and the construction of thenozzle must be matched with the mould (Figure 2). The nozzle cross section is elliptical, somewhat stretched in direction of major axis, so are the lateral outlets, which are made at on incline of a=250. The nozzles with different incline angle are used for different immersion depth.5. Study and Manufacture of MouldThe design work of a mould includes: determination of the shape and size, selection of the material to be made of, estimation of cooling intensity. All above mentioned points are essential for a rational design. The mould shape and size is determined by casting technology. 1 Determination of maximum openingThe maximum opening of the mould must meet with following three requirements: (1)Enough space for submerged nozzle; The shell solidification shrinkage of 0. 8%1.0%to be considered; The incline angle of the opening10for some mould length and slab thickness (Figure1).The calculated results for different slab width are shown in figure 3. For this test, mould of 900mm in width, 5070 mm in thickness was used, the reasonable maximum opening was 140160mm.3. 2 Design of mould curved surfaceAccording to the shape of crossline of inner curved surface with straight part, the moulds of thin slab caster can be divided into three groups: trapezoidal, rectangular and elliptical (Figure 4).For curved surface design, first of all, the strain of shell must be less than 0. 2%0.3%, that meansD / 2R 0. 2%(1)whereDshell thickness;Rcurvature.Second factor, which should be considered, is that the curvature in horizontal direction must be always the same, and the curvature is increased from top to bottom. The formula of curved surface of elliptical mould is:X2 / 3502+ y2 /1752 =1(2)wherexaxis in direction of mould thickness;y axis in direction of mould width.4. Study on Flow Pattern in Mould4.1 Mathematical modelDuring casting, there are two processes in the mould: solidification of a shell at the water cooling wall and movement of remained liquid steel caused by teeming stream. The mathematical expression of these processes in terms of threedimensional steady unpressed transfer is given as:Continuity equationu jxi = 0(3)wherei, j index,i, j =1, 2, 3;u speed of liquid steel.Momentum equationu u1 p uu 2iij = -xrx + x vl x +x - 3 Kdij (4) j j j j i j wheredij Kronecker mark,1dij =0when when;i= j i jp pressure;r density;vr effective viscosity coefficient,vr = v + vt ;v physical viscosity coefficient;vt viscosity coefficient of turbulent flow,vt =0. 09exp 2.5 (1 + RT50)K 2 e ,2Rt = Ke v ;Kturbulent energy;e emission rate of turbulent energy.Turbulent energy equation 2u K = vt+ v K + vui ui +j - 2v k - e(5)tx s xt x xx x j Kj j ji j Emission rate equation of turbulent energyDe vt e = + v Dtx j s B xj + c e vui ui +u j e 2(1) c+ 2v v2i2u (6)1 K t x xx 2 Kt x x j ji ji Wherec1 ,c2 ,3. B ,4. K constants;t time.s K =1.3;c1 = 1.44 ;2c2 = 1.921 - 0.3exp(- Rt ) Energy equationTr cpuiX = x krt x (7) I i i wherecp isobaric heat capacity; Ttemperature;ke effective heat teanfer coefficient, kphysical heat teansfer coefficient;ke = k + cpmt prt ;prt prnumber of turbulent flow,prt =0.9;mt = ve r .All the equations mentioned above can be given in this combination form x= G(8)uijxjj + Sji The calculation for a mould with a complex geometry is quite complicate, this problem in this case was solved by boundary fit coordinate system. After arithmetic operation the equation (8) is changed to(Juj )+(JVj )+(JWj )= GJj(x 2 + x2 + x 2 )xhxxxxyzhx+ GJjh(h 2 +h2 +h 2 )+ zyzGJj(z 2 + z2 + z2 )+ S(9)zxyzThe arithmetic operation is described in literature 2.4.2 Boundary conditions and method of calculationFor calculation of heat transfer in mould, it is necessary to estimate flow field first, then the heat field is calculated. In calculation, it was assumed that the field is symmetric, thus the calculation was done for 1 /4 part. The boundary conditions were:(1) At the nozzle outletsAt the nozzle outlets, the speed distribution was given in accordance with the results of water modelling; the temperature was assumed as 1560and nozzle outer wall was assumed as isothermic.(2) At bottom side and symmetrical surfaceAt the cross section of down stream, all the differentials ofphysical quantities (T, ui k ,e ,p) in direction z were assumed zero; at the symmetrical surface, normal speed, normal differential of tangential speed and k , e , Twere zero too.(3) Top surfaceIt was treated as symmetrical.(4) Mould wallIt was assumed that at the wall there is a cohesion condition: u=V = w =0, K= Ke ,e = eeeFor calculation K=10-4. e =10-5.The heat transfer rate at the mould wall is determined only by casting speed and distance to top surface.The flow field and temperature was calculated by SIMPLE method3, developed by Patark.The calculation net is shown in figure 5.2. 3 Quality of thin slab Calculated results for flow and temperature fieldThe speed and temperature distribution for the points at symmetrical surface for y (J=1) is shown in figure 6.From this figure 6(a), it can be seen that the flow field can he divided into three zones: efflux region near nozzle outlets, upper vortex region above nozzle outlets, bottom vortex beneath nozzle outlets. The jet speed in the efflux region is decayed very quickly in direction to narrow face of mould of x. The efflux then is divided in two streams after it is stopped by the narrow face, one goes up forming the upper vortex another goes down forming the bottom vortex. In bottom vortex region, the main stream goes up near x axis.The isotherms in figure 6(b) show clearly how is the heat of steel transferred to the mould wall in movement. The steel in efflux region is cooled due to strong turbulence, diffusing heat radially. As mentioned before the efflux is divided in upper and bottom stream after it is stopped by narrow face of the mould, the bottom stream is cooled down continuously, moving along mould face, thus the steel n the bottom vortex is cooler.From the calculated results, it is clear the steel in the region of higher flow speed is hotter. As a result of striking of high speed stream on the shell, the shell thickness is relatively small.So, the shell near the nozzle and at narrow face in the region of bottom vortex is relative weak and attention should be paid to these regions in operation to prevent vertical cracking and break-out. Observed flow fieldIt was observed in water modeling and hot test, that flow field pattern and efflux has great influence elusion on the content vertical cracking and nonmetallic in due to small opening and short distance from nozzle to mould walls. In the beginning of Got test, when larger outlets were used, high vertical cracking index was observed (the cracking was observed in the both regions 100150mm from central line of slab regularly). This defect was reduced a lot when nozzle outlets became smaller and incline angle was changed. The reason is as follows:When larger nozzle outlets are used Figure 7(a), the kinetic energy of efflux is smaller and is dissolved quickly, striking directly on the wide face of the mould, washing the shell at this place making shell growth rate small. On the other hand, the temperature distribution in the mould is abnormal causing high growth speed of shell near narrow face due to not reaching of efflux to the narrow face, and better cooling conditions. After the slab has left mould, the vertical cracking is observed as a result of combination effect of internal stressand rapid cooling in second cooling zone. When smaller nozzle outlets are used Figure7 (b), the efflux guided by outlet periphery is quite stable and strikes directly on the narrow face, thus the high temperature zone and eddy current zone is moved to narrow face , avoiding meeting with stress concentration region inthe shell. The nonmetallic inclusion content of slab is mainly influenced by nozzle shape andimmersion depth. When the immersion depth is small, the incline angle of outlets is not rational, the efflux strikes on the mould powder directly, making powder layer unstable and entraped or involved into the metal Figure 8(b).This circumstance is observed also in following other two cases: the upper stream formed from efflux is strong enoughA in figure 8 (a);a negative pressure region is formed due to nonuniform fieldR in figure 8(b)From water modeling and hot test it is coneluded that whena = 250, the immersiondepth is 200300 mm, the mould powder layer is stable, the nonmetallic inclusion content of steel is reduced obviously. Starting and CastingThe starting is a key problem for thin slab casting because of speciality of the mould and nozzle construction. For funnel type mould, to meet the requirements of shell deformation, the shell thickness at the bottom of deformation zone in the mould must be less than 1/2 of slab thickness, that means, the mould must be filled with steel within 60 s. From start of teeming, the casting speed must reach the minimum speed of 1 m/min within 80 s, a normal casting speed must be reached within 150 s. The practical casting process is shown in figure 9.For rectangular mould, because of short distance from nozzle to the wall (on1y 12 mm), the nozzle must be preheated to 9001100 before use. In the beginning of casting, a special low melt point exothermic mould powder is added around the nozzle to avoid bridgingbetween nozzle and shell, and at starting, the steel should fill the mould and casting is to be started within 30 s, the casting speed must reach 1.2 m/min or more within 60 s, a normal casting speed must be reached within 120 s. The process is shown in figure 10.For this caster, restricted by metallurgical length and other factors, for slab 50 mm in thickness, normal casting speed is 3m/min: for slab 70mm in thickness, normal casting speed is 2 m/min. At the end of the casting, speed is reduced at first, after the end is solidified, the strand is dragged rapidly. Conclusions- The mould length changes with technology, in general, the length is 9501110 mm due to higher casting speed in comparison with traditional continuous casting.- Based on technology used and solidification shrinkage, the opening of mould is in some relation with the minimum slab width. The opening is 140160 mm for slab 900 mm in width.- The slab quality depends on the curved surface design. Hot test showed the moulds used in test are rational.- In the region of higher circulating speed of liquid steel, the temperature of the steel is higher and striking of hot metal on the shell gives a negative influence on shell growth.- The weak points of shell formation in thin slab casting are in the region of efflux andthe main stream in bottom vortex.- The hot test had proved that the starting and casting technology used is rational. REFERENCES1 Chang Xi.Principles of Transfer in Metallurgy. Seconded. Beijing; Publishing House ofMetallurgy, 1991, 267279 din Chinese)2 Wang Laihua. Study on Fluid Field and Heat Transfer in the Mould of Thin Slab Caster.Dissertation, CISRI, 1990 (in Chinese)3 Nakato Hetal. Steelmaking Conference Proceedings, 1987, 70, 427431中等厚度薄板连铸技术研究阚勇 张百亭 张辉 倪满森 纪秀秋摘要 薄板连铸是七五计划和八五计划的一项主要工程,在金属基金协会支持下,CISIRI 公司于 1991年1 月至 1992 年 6 月期间在兰州钢铁公司对 50900mm,70900mm,70500mm 三种薄板采用 102 种加热方法进行测试。1992 年 6 月采用 46 种加热方法以 91.3% 的浇注率成功浇注了 412 吨钢。该结果满足了当时的需要。同时对连铸机机型,重量, 和板带质量影响因素也进行了研究。关键词:结晶器薄带连铸技术产权1.介绍连铸技术是最近世界上对薄板的研究和开发以及直接将板带变成轧制钢板的一项 非常重要的新技术。该技术以节能、基建投资少、生产费用底、金属流失少等的明显优 势改变了传统的板带生产技术。所以它代表了板带生产的发展趋势。与传统板带生产技 术相比薄板带连铸技术生产线的生产费用和基建投资分别减少了 10%-20%和 15%-20%。 这项技术不适合现有的窄带生产线,但是对新钢铁公司,中、小企业生产板材、带材非 常有用。据有关资料表明该项技术每生产一吨薄带连铸钢所消耗的能量比传统生产方式 少 62.8KJ。如果带材采用热装热轧所节省的能量会更多。对薄带材本身而言,薄带材 连铸的优势并不能体现出来,因为它厚度小并且面积大,除非带材采用热装热轧。薄带铸件直接轧制生产线的关键技术是薄带铸件的三个核心技术:结晶器,冷却管, 结晶器振动装置。在试验测试期间这些核心技术都已取得了突破性的成果。本文主要阐 述了有关薄带铸件的产生以及结晶器形状的研究,热交换,浇注技术,带材质量特别是 表面质量影响因素。2.试验铸件和浇注技术兰州钢铁公司的连铸机是垂直弯曲型连铸机,圆弧半径是 2 m,冶金长度为 4390 mm, 结晶器类型有两种:截面面积为 70900 mm,50900 mm 的可变截面带材结晶器,和 截面面积为 70500mm 的固定截面结晶器。振幅高为3mm,频率为 0300r/min。测试 的钢水由电弧炉中运来,该炉理论上的容量大约为 10t,钢包的容量为 4t,该实验中主 要的设备有盛钢桶、钢包回转台、钢包运送小车、长水口、结晶器、振动装置、二次冷却区、夹送辊、翻钢机、矫直机、剪切机,输送辊道、操作系统、电机驱动系统、和控 制系统。最大的拉坯速度为 4m/min。生产的钢种有 20MnSi,16Mn 和不锈钢。薄带连铸典型的核心部分是结晶器,长水口。锥型结晶器和长水口如图 1 和图 2 所 示。图 1 结晶器示意图图 2 浸入示长水口示意图从图 1 我们可以看到结晶器下边是直的,它的横截面积决定了带材的大小。结晶器 的上部逐渐变宽以使长水口能够浸入。这种结晶器的设计是根据钢水凝固原理以及在外 力作用下凝固壳变形的原理制成的,长水口的结构必须与结晶器相匹配(图 2)。长水 口的横截面积无论在哪个坐标面内都是椭圆形的,极限偏差为250mm,出水口也是如 此。长水口分为不同的倾斜角度是为了满足不同的浸没深度。3.结晶器的研究与制造结晶器的设计包括:材料的形状与大小,材料的选择,冷却状态下的强度。以上几 点都是根据传统设计估算的,结晶器的形状和大小要根据浇注技术来决定。3.1 最大开口度的决定 结晶器最大开口度应符合以下三点: (1)足够的空间使长水口浸入; (2)考虑外壁具有 0.8%1.0%的收缩;(3)对一定长度的结晶器和一定厚度的带材要求开口面倾斜角10(图 1)。不同带宽的计算结果如图 3 所示。该实验中结晶器宽为 900mm,厚度为 5070mm,最大的 合理开口为 140160mm。3.2 结晶器曲面的设计 对曲面的设计而言,根据横截面的形状垂直部分线性内表面,薄带连铸机可以分成三类:扇形,长方形,椭圆形(图 4)。首先,外壳的应力必须小于 0.2%0.3%,即 D/2R0.2%(1) 式中 D壁厚;R曲度。 其次考虑的是水平方向上的曲度必须相同,曲度从顶部到底部逐渐增加。椭圆形结晶器曲面公式为X2 / 3502+ y2 /1752 =1(2)式中 x结晶器厚度方向上的坐标; y结晶器宽度方向上的坐标。 图 3 不同最大开口度时带宽与收缩率的关系图 4 三种结晶器示意图 结晶器宽 1100mm,带厚 50mm(a)扇形(b)长方形(c)椭圆形4 结晶器中流动方式的研究4.1 数学模型 浇注过程中,结晶器中有两个变化过程:在水冷过程中凝固壳的固化和钢水的流动。整个过程可以用数学表达式表示为: 连续方程:u jxi = 0(3)式中i, j 自然数, i, j =1,2,3;u钢水流动速度。 动量方程:u u1 p uu 2 ij i j = -+xrxx vl x +x - 3 Kdij (4) j式中dij 常数,dij = jj j i 1i= j0i jp 压力r 密度vr 理论黏度系数vr = v + vtv 实际黏度系数vt 运动黏度系数, vt =0. 09exp2.5 (1 + RT50)K 2 e ,2Rt = Ke v ;K动能e 动能变化率; 动能方程:2 u K = vt+ v K + vui ui +j - 2v k - e(5)tx s xt x xx x j K动能变化方程:j j ji j De vt e = + v Dtx j s B xj c e vui ui +u j e 2(2) c+ 2v v2i2u (6)1 K t x xx 2 Kt x x j ji 2式中 c1 , c2 ,s B ,s K 常数; t 时间;ji s K =1.3;c1 = 1.44 ;c2 = 1.921 - 0.3exp(- Rt ) 能量方程:Tr cpuiX = x krt x (7) I式中 cp 比热T温度; i i ke 有效热交换系数; k实际热交换系数;prt pr 修正系数, prt =0.9; mt = ve r . 以上方程可以总结为下面的形式: x= G(8)uijxjj + Sji 具有复杂几何结构的结晶器的设计计算是非常复杂的,这时可以用极坐标的方法来 计算,通过算术运算方程式(8)变为:(Juj )+(JVj )+(JWj ) = GJj(x 2 + x2 + x 2 )xhxxxxyzhx+ GJjh(h 2 +h2 +h 2 )+ zyzGJj(z 2 + z2 + z2 )+ S(9)zxyz数学运算如表2所示: 4.2 边界条件和计算方法结晶器的热交换计算,首先非常有必要估算流动区域,然后计算受热区域。计算时 假设受热区域是对称的,所以,只需计算 1/4 部分。边界条件是:(1)喷嘴出口处喷嘴出口处的速度与浇注速度一致;假设出口温度为 1560并认为是等温线(2)底部和对称表面钢水流横截面所有物理量 z 坐标都认为是 0;对称表面上,法向速度,切向速度以 及 k , e ,T的差异都视为 0。(3)上表面上表面也视为 0(4)结晶器壁-4-5假设结晶壁的内在条件是 u=V = w =0, K= Ke , e = e e ,计算时 K=10. e e =10 .结晶器壁上的热交换率取决于浇铸速度和到顶部的距离。 流动区域的计算可由简
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:双辊连铸机总体及主传动系统设计【优秀3+2张CAD图纸】
链接地址:https://www.renrendoc.com/p-368547.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!