陈四楼矿1.5 Mta新井初步设计【含CAD图纸+文档】
收藏
资源目录
压缩包内文档预览:
编号:37121444
类型:共享资源
大小:5.72MB
格式:ZIP
上传时间:2020-01-05
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸+文档
陈四楼矿1.5
Mta新井初步设计【含CAD图纸+文档】
陈四楼矿
1.5
Mta
初步设计
CAD
图纸
文档
- 资源描述:
-
压缩包内含有CAD图纸和说明书,均可直接下载获得文件,所见所得,电脑查看更方便。Q 197216396 或 11970985
- 内容简介:
-
浅析采煤工作面断层处灾害机理及防治摘要随着煤炭产量的日益提高,工作面的推进速度逐步加快,但断层威胁也日趋严重。断层处存在的顶板冒顶、突水、瓦斯突出三大矿下灾害,犹如三只老虎拦住了工作面的推进,同时也是三座大山压在了工人身上。本文初步系统分析了三大灾害的形成机制,提出了防治的有效措施。关键词 断层 顶板冒顶 突水 瓦斯突出 防治 1 概述最近几年,我国经济蓬勃发展,人民生活水平显著提高,对能源的需求也呈现出前所未有的迫切。据统计,我国2006年一次能源产量为22.1亿t标准煤,2007年产量为25.369亿t标准煤。其中煤炭占据主导地位,2006年产量突破23亿t,预计2010年突破25亿t,2020年突破30亿t,而煤炭市场仍然保持供不应求的局面。煤炭企业抓住大好时机,加产促产,工作面推进呈加速状态。工作面的加速推进,使各种地质灾害的威胁相对加重。其中断层及其附带的顶板冒顶、突水、瓦斯突出尤为严重。它们或单一或综合发生,严重制约了井下工人的生命安全保证和矿井的正常生产。2006年,煤矿死亡率为2.81人/百万t;2007年煤矿死亡接近4000人。其中断层诱发的伤亡占据不小的比例。针对断层及其危害的产生机理,采取有效的措施进行必要的控制和治理势在必行。工作面遇断层的顶板冒顶主要有压垮型、漏冒型和综合型冒顶三种,对其顶板状态参数与支护参数作科学分析,并进行合理的采场控顶设计(本文针对综采工作面,单体支柱工作面可作参考),冒顶事故是可以避免的;工作面突水主要是工作面遇断层而沟通了上下岩层水力的联系而造成的,对其进行提前监测和处理是关键;瓦斯突出主要是由于断层沟通了上下煤层的瓦斯流通,而当工作面将近揭露断层时,导致瓦斯三维受力不均,工作面侧煤层阻力不足以维持平衡致使瓦斯瞬间喷出造成的。对于以上三种危害,主动采取有效的措施,都是可以避免或把损失降到最低程度的。部分断层是有益的,对水、瓦斯有控制作用,但针对有潜在危险的断层必须采取必要的措施。2 工作面断层处冒顶机理及控制在煤矿生产过程中,回采工作面遇有落差大于采高的走向断层,可以断层为界,将工作面分为上下二段,开掘中间联络巷进行回采。对于回采工作面遇有断层落差大于采高的斜断层,则要另掘开切眼,使其搬到新工作面再进行回采。在平推硬过过程中,断层上盘或下盘受采动影响,失去“铰接”状态而呈现整体滑移。其压力不是直接作用在工作面前方煤体和采空区矸石上,而是给予支架比正常来压要剧烈的压力显现;断层往往附带破碎带,在采动影响下,其漏冒的危险性加大。因此,必须根据现场实际情况制定控制措施,提高安全系数。2.1冒顶机理1、断层处压垮型冒顶机理断层的切割,使支架上部处于周期来压的顶板提前或迟缓性整体滑移下沉,致使支架工作阻力不能及时满足,造成压跨支架事故。示意图见图1。(1)工作面正常推进,直接顶和老顶周期性垮落。此时前面已经存在断层,由于断层两盘间滑移,使老顶周期破断垮落推迟。(2)工作面继续推进,逐渐接近断层,而支架前方的煤体脆性破裂,失去对顶板的支持力,使支架受力在短的时间内增大,压坏支架。2、断层处漏冒型冒顶机理该类型冒顶主要是当断层走向平行于工作面时较为突出。冒顶的条件:直接顶异常破碎;煤层倾角较大。冒顶机理:1)大面积漏垮型冒顶机理:主要是断层破碎带中的破碎顶板在大于其安息角的上面部分,受重力作用冒落,从而使支架失稳倾倒,又使该支架控制的其余破碎顶也冒落。这种情况主要发生在大倾角走向长壁采煤方法中。这种情况在综采工作面中不常见。2)靠煤壁附近冒顶机理:由于断层破碎带的存在,在一些煤层的直接顶中,存在“人字劈”、“升斗劈”或其他形状的游离岩块。在采煤机落煤后,如果支护不及时,端面距过大,这类游离岩块可能突然冒落砸人,造成冒顶事故。如图2。3、断层处综合类型冒顶机理由于断层构造的存在,造成煤层直接顶中存在游离顶板及破碎带的大量破碎顶板。这些游离顶板由原来的三轴受力变为两向受力,甚至是单轴受力,图1(a)工作面正常推进图1(b)顶板滑移下沉,支架压坏图2 顶板中游离岩块漏冒从而整体失稳,受采动或周围岩体破裂影响而运动导致压垮组合漏冒的综合型冒顶。2.2控制措施任何控制措施都需要现场技术工人具体地实施,需要充分发挥工人主动积极性,需要加强现场科学管理和问责制的监督。1、为预防工作面断层处发生压垮型冒顶事故,应采取下列措施:(1)采场支架的支撑力应能平衡最不利情况下垮落带直接顶及老顶岩层的重量。(2)采场支架的初撑力应能保证直接顶与老顶之间不离层(专门试验表明,当支架初撑力足够大时,可令直接顶沿放顶线切断而不在煤壁处断裂,从而可保证直接顶与老顶之间不离层)。(3)采场支架可缩量应能满足裂隙带老顶最大下沉的要求。以上措施正是综采工作面控顶设计中有关预防压垮型冒顶的重要原则。2、预防断层处漏冒型冒顶的措施(1)工作面采用掩护式、支撑掩护式液压支架。(2)大面积漏冒在液压支架支护工作面不易出现,主要出现在工作面与巷道接替处。为此,应加强端头支护,严禁端头局部漏冒。可运用端头支架,或者锚杆密集支护。(3)靠煤壁附近局部冒顶的预防与控制:提高支架初撑力使端面冒高不超过300 mm;采用及时支护的移架方式(采煤机割煤后先移架再推移输送机),并令端面距不超过340 mm;当采高大于2.53.0 m时,支架应带护帮装置,以免煤壁片帮扩大无支护空间;过断层破碎带时,应对破碎直接顶注入树脂类粘结剂使其固化,以防止冒顶。3、预防断层处综合类型冒顶综采工作面主要怕遇到长度大于5 m的平行于工作面的断层。此时,支架若有较大的富裕阻力,工作面可照常推进;若无,应让工作面与断层斜交,或挑顶。预防这类冒顶,可综合采取以上两种类型的防治措施。总上,在制定冒顶防治措施时,应加强现场监测,科学预报;科学设计选用有足够初撑力和工作阻力的支架;带压移架。2.3综采工作面断层处控顶设计举例:阳泉矿务局某矿煤层柱状图见图3。实际测定81202工作面参数见表1。采区内断层较多,煤质较软。综采采全高,初步选用液压支架为支掩式BC52025/47型,具体参数见表2。表1 21202工作面参数序 号项 目单 位数 值1采 高m3.802周期来压步距m11.503控顶距m44端头距mm3005垮落带直接顶岩层平均体积力kN/ m3256煤层倾角8一、漏冒型冒顶的控制措施具体措施参见2.2中的内容,这里不再赘述。二、压垮型冒顶的控制措施1.确定垮落带高度可以用下式(一)来判别进入裂隙带的老顶岩层。 公式(一)式中:由下而上第层老顶岩层(基础岩层)的厚度,m; 由下而上第层老顶分层的厚度,m; 煤层采高,m; 老顶及其附加岩层的岩石图3 阳泉某矿煤层柱状图 碎胀系数,取1.151.33;直接顶厚度,m;直接顶岩层的岩石碎胀系数,取1.331.5。由柱状图可以判定第一层老顶为细砂岩,厚度为4.24 m,=4.24 m;直接顶可划分为三个分层,=5.49 m;取1.15;=1.33;=3.80 m。代入公式(一)可得:当=1时公式右边=3.80-5.49(1.33-1)+2=3.99(m)3.69,所以第一层老顶已经进入裂隙带。所以,垮落带高度为5.49 m由于第一层老顶上覆0.11 m煤层,在支架反复支撑过程中,容易引起老顶离层破断。支架的工作阻力应能支撑住工作空间及采空区上方垮落带岩层的重量设前方有一断层平行于工作面,则考虑最不利情况,即取两倍的周期步距。见示意图4。在综采工作面中,为支撑垮落带岩重,支架所需工作阻力可按公式(二)计算。 公式(二) 式中:每架支架所控制的工作面长度,取1.5 m/架; 垮落带直接顶岩层平均体积力,25 kN/ m3; 垮落带直接顶厚度,5.49 m; 直接顶岩梁长度,等于端面距、支架顶梁和前梁长度之和与直接顶岩层在支架后的极限悬顶长度(页岩取1.0 m),5.1 m; 垮落带中该老顶及其附加岩层的平均体积力,25 kN/ m3; 垮落带中该老顶及其附加岩层的厚度,4.35 m;垮落带中该老顶的岩块长度,23 m;煤层倾角,8。 图4 支架承受垮落带岩重可得:=1.5(255.495.1+254.3523)cos8 =4755.15(kN)可知,现有支架不能满足安全需要,必须采取措施处理顶板。譬如,在工作面推进距离达到周期步距时,如果周期来压推迟,应在支架放顶线处进行深孔爆破或进行顶板注水软化。支架的初撑力应能保持下位岩层与上位岩层之间不离层下面以保持直接顶与老顶之间不离层为例进行设计。为使直接顶沿支架后端切断,这时,在最小控顶距状态下,支架初撑力必须满足三个条件:1)支架初撑力能平衡支架上方直接顶岩梁重量;2)支架后端的初撑力能平衡采空区上方将要被切断的那段直接顶悬顶岩重;3)支架初撑力所产生的主动力矩能平衡工作空间上方及采空区上方直接顶岩梁所产生的力矩。设平衡直接顶岩梁重量所需的支架初撑力为,则 公式(三)式中:每架支架所控制的工作面长度,取1.5 m/架; 垮落带直接顶岩层平均体积力,25 kN/ m3; 垮落带直接顶厚度,5.49 m; 直接顶岩梁长度,等于端面距、支架顶梁和前梁长度之和与直接顶岩层在支架后的极限悬顶长度(页岩取1.0 m),5.1 m;=1.5255.495.1 =1039.75(kN)设平衡直接顶岩梁所产生力矩所需的支架除撑力为,则 公式(四)式中:直接顶岩梁长度,端面距、支架顶梁和前梁三者之和,4.1 m; 作用点距顶梁后端的距离(当支架为单排立柱时,为立柱顶端至支架后端的距离;当支架为双排立柱时,建议为两排立柱顶端的中点至支架后端的距离)1.42 m。= 989.32(kN) 设平衡采空区上方将要被切断那段直接顶悬顶岩重所需支架的初撑力为,可以判断在、之中,最小,最大。故所选用支架初撑力可以保证下位岩层与上位岩层之间不离层。表2 液压支架技术特征表序 号项 目单 位数 值1型 号BC52025/472支撑高度m2.504.703工作阻力kN50964初撑力kN47045支护强度MPa0.3370.8496适应倾角157顶梁长度m2.48前梁长度m1.49质 量t18.50支架的可缩量应能适应裂隙带老顶的下沉最大控顶距时,支架顶梁末端处的顶板最大下沉量,参见图5可按下式计算:= 公式(五)式中:最大控顶距(采煤后未移架时的控顶距),5.80 m; 裂隙带老顶断块触矸处的下沉量,可以通过下列公式进行计算:。可得=1.98 m;裂隙带老顶周期来压步距,一般大于10 m,计算时应取实际数据,23 m。 图5 受裂隙带影响的顶板下沉量= =0.50(m)所需支架最大高度按下式求得: 公式(六)式中:煤层最大采高,3.80 m。 =3.80(m)所需支架最小高度可按下式求得。-式中:煤层最小采高,3.50 m;卸载高度,可取0.05 m。=3.50-0.50-0.05 =2.95(m)所选支架伸缩量可以满足需要。综采放顶煤工作面控顶设计特点综采放顶煤时,其顶板条件,顶板事故及预防,以及确定支架工作阻力、初撑力与支架高度的准则,与一般综采基本相同,但为确保支架安全过断层,在进行控顶设计时,应加入断层的影响。特点。1)放顶煤的采高大,等于割煤和放顶煤的高度之和,垮落和裂隙带上移,遇到断层之后,顶板控制难度加大。因此,在确定垮落带和裂隙带的高度时,可取1.331.5,可取1.51.7。2)综采放顶煤时顶煤必然软弱破碎,因此支架初撑力应比一般掩护式或支撑掩护式大些。为防止老顶冲击推倒支架,综采放顶煤支架的机械强度和防倒性能应比一般支架强一些。单体支柱工作面控顶设计可参考以上内容。3 工作面断层处突水机理及控制1984年6月2日,开滦范各庄煤矿2171工作面突水,水量达到2053 m3/min。2005年广东兴宁大兴煤矿工作面特大突水,被困123人全部遇难。山东肥城杨庄矿9101工作面揭露断层,造成突水73.5 m3/min。过去20年间,我国250多对矿井突水被淹。3.1断层处突水机理断层处突水主要包括顶板突水和底板突水。煤矿生产中的采掘活动,都是在煤层之内和附近进行的,所以揭露较大的断层机会不多,而30m断距以下的小断层是经常遇到的,据分析矿区底板突水事例,其中接近断层或接触断层发生突水占80%,断层的存在往往为突水创造了条件。突水机理归结如下,详见示意图6。(1)断层两盘的上升和下降,缩短了含水层与煤层的间距,原来理论设计的防水措施失效。(2)断层伴生的裂隙削弱了隔水层的抗压强度,把原来没有水力联系的岩层沟通而增强了地下水的交替运动,为裂隙溶洞的发育创造了条件,增加了地下水的静储量,增强了含水层的富水性。(3)有限元计算结果表明,断层面作为岩体中的一个弱面,在其周围产生较大的应力集中,断裂带附近的岩体最先产生塑性变形及采动裂隙。(4)断层或断裂构造的存在,将导致一定厚度的断层或断裂破碎带的存在,这些破碎带物质长期受到含水层水的浸泡作用,其强度必会大大降低,这就必然形成一个弱化的导水通道,加上开采活动的影响,使其阻水能力大大降低。 图6 工作面断层处突水机理断层的存在,并不意味着遇断层马上突水。大量突水资料表明,导水断裂往往形成深部开采滞后突水,即随着采掘工程活动的延长,煤层底板岩体的断层带物质在奥灰高承压水和矿压的长期作用下,其强度逐渐降低,而且随着采掘工程的继续,被弱化的断层带物质会逐渐由下向上扩展,范围不断扩大,即位于断层带的奥灰水导升高度逐渐向上发育,最后当与矿压采动破坏带相连通时,导致煤层底板突水灾害的发生。2005年广东兴宁大兴煤矿工作面特大突水,其突水机理为:防水煤柱受断层破碎带的影响,在上部水压、采动矿压、煤层自重、地下水的联合动力作用下,破碎的岩体沿垂向固有构造裂隙面向上塌落形成椭圆形柱体,待形成自然平衡拱后塌陷垮落停止,上覆岩层得到暂时稳定;随着采煤工作面的不断扩大,自然平衡拱被再一次打破,椭圆形柱体内的垮落继续向上发展,直至最后的关键层破坏或破碎达到临界突水系数而发生突水2006年12月16日5时15分,河北省金能集团井陉矿务局临城煤矿发生突水,造成全矿井淹没。该矿属国有重点煤矿,初步分析事故直接原因是:一处工作面小断层发育,底板破碎,在回采过程中,由于矿压和底板承压水的作用,使底板奥陶系灰岩发生突水,导致淹井。工作面在回采过程当中,尤其是在多断层地带,应坚持有疑必探,先探后采的原则。3.2断层处突水防治措施防水措施的制定必须科学,与现场结合起来,一旦制定,必须认真实施。综合现代治突水措施,现总结如下:(一)探水先行。(1)探放断层水的原则凡遇下列情况必须探水:工作面前方或附近有含(导)水断层存在,但具体位置不清或控制不够严密时。工作面前方或附近预测有断层存在,但其位置和含(导)水性不清,可能发生突水事故时。工作面底板隔水层厚度与实际承受的水压都处于I临界状态(即安全隔水层厚度和安全水压的临界值),在采煤工作面前方和采面影响范围内,是否有断层情况不清,一旦触及很可能发生突水事故时。断层已被巷道揭露或穿过,暂时没有出水迹象,但由于隔水层厚度和实际水压已接近临界状态,在采动影响下,有可能导致断层活化并引起突水,需要探明在深部其是否已与强含水层或底板水导升高度相连通时。根据井巷工程和自设断层防水煤柱等的特殊要求,必须探明断层时。工作面距已知含水断层60 m时。工作面接近推断含水断层100 m时。采区内小断层使煤层与强含水层的距离缩短时。采区内构造不明,含水层水压又大于23 MPa时。工作面上方隔水层较薄,而地表有水体时。(2)探查的主要内容探断层水的钻孔应与探断层构造孔结合起来,需查明的具体内容如下: 断层的位置、产状要素、断层带宽度(包括内、中和外三带)及伴(或派)生构造和其导水、富水性等。断层带的充填物、充填程度、胶结物和胶结程度,断层两盘外带裂隙、岩溶发育情况及其富水性。断层两盘对接部位岩性及其富水性,煤层与强含水层的实际间距(即隔水层的厚度)。断层与其他含(导)水断层、陷落柱或其他水体交切部位及其富水性。如为叠瓦式断层,应确定其综合断距。查明并记录探断层水钻孔在不同深度的水压、水量或冲洗液漏失量,并确定或判断底板水在隔水层中的导升高度。为探明以上内容,应首先提供断层面等高线图及两盘主要煤层、含水层对接关系图,探测断层预想剖面图。(3)钻孔布置探水作业前必须认真学习煤矿安全规程中的有关规定,安全操作。1)在工作面进、回风巷道中,每间隔30 m布置一个钻场,钻场以平面夹角15,钻3个孔。确定断层走向、倾向、倾角和断层的落差及两盘的对接关系。其中至少有一个孔打在断层与含水层交面线附近,见图7。2)如果在工作面上方有巷道或由该巷道引出独头巷道,布置钻场上下钻孔,见图8。根据钻孔所获得的静水压力和隔水层厚度等参数,确定防治水的措施。表3 突水等级表等 级突水量 m3/min特大突水点30大突水点1030中等突水点110小突水点1 图7 钻孔布置图 图8 上部巷道布置钻场3)为了提高钻探的效率和准确性,减少盲目的钻探带来的损失,应积极采用科学的探测方法配合钻探。现代最为有前途的有矿井瞬变电磁法和地震勘探技术。2005年采用矿井瞬变电磁法先后对皖北煤电有限公司任楼煤矿、祁东煤矿、安徽恒源煤电股份有限公司、山东枣庄矿业集团公司等煤矿煤层顶、底板富水构造进行探测,和以往没采用该方法相比大大减少钻孔数量,降低成本,为煤矿防治水工作提供可靠地质资料,避免工作面煤层底板突水事故发生。完成探测测线长度约56000m,工作面在未做矿井瞬变电磁探测工作前一般在巷道内每隔50m布置一个钻孔对顶、底板进行注浆或防水,而根据矿井瞬变电磁探测结果,对有异常区域布置钻孔,无异常区域不用布置钻孔,按工作面百米巷道少布置1.5个钻孔(根据多年矿井瞬变电磁探测结果和需要布置钻孔数量分析)每个钻孔平均深度100m、钻孔按300元/m成本计算,共节约费用720万元,不仅给本矿生产节约大量的时间和成本,同时带来巨大的社会效益。淮北矿务局朱仙庄矿,采区地震勘探之前依据精查地质报告提供的资料预测第五含水层赋水面积约500 km2左右,需留防水煤柱预计约5000104 t左右。经采区地震勘探查清了第五含水层赋水仅有8 km2,同时新查清了塔桥断层,落差6001000 m,倾解70,不但不导水反而隔水,解放原预留防水煤柱煤炭3000多万 t,如按100元t测算直接经济效益30亿元,并减少防治水费投资1000多万元。这两种技术具体使用和操作可参看有关书籍,这里不再多做介绍。(二)断层处突水防治措施目前的防治措施主要有疏放降压技术、矿井注浆技术。1)降压技术包括巷道疏放、钻孔疏放和联合疏放。当煤层顶板或底板中有含水层时,可考虑把准备巷道提前掘出、把巷道布置在底板含水岩层中,进行疏放含水层水。具体布置示意图见图9。 图9 疏放水巷道布置示意图 钻孔疏放我国不少煤矿煤层上部为砂岩裂隙含水层,其中裂隙水常沿裂缝进入采掘工作面,造成顶板滴水和淋水,影响采掘作业,甚至在矿山压力作用下,伴随着回采放顶导致大量水涌入井下,造成停产和人身事故。巷道顶部离含水层在1520 m的情况下,可采用打入式过滤器疏放巷道顶部含水沙层或承压含水层水(见图9)。即在巷道中每隔一定距离向顶板上打钻孔,终孔时立即将打入式过滤器的滤管沿钻孔压入含水层,使顶板水泄入巷道,通过排水沟向外排出。含水层离煤层较远,大于30 m时,且水量与水压均较大,为消除顶板水的威胁,可由地面打钻孔,向下穿过含水层并与井下疏放巷道或排水硐室相通,将顶板水有节制地泄入井下疏放巷道或排水硐室,然后把水排出地面,此法称直通式放水见图10。 图9 打入式过滤器 图10 直通式放水钻孔综合运用以上两种疏放技术,称联合疏放。2)矿井注浆堵水技术当涌水量很大,仅仅依靠排水已不可能或不经济时,注浆堵截水源通道,然后再进行排水。注浆堵水就是将水泥浆或化学浆通过管道压入井下岩层空隙、裂隙或巷道中,使其扩散、凝固和硬化,从而岩层具有较高的强度、密实性和不透水性,达到封堵截断补给水源和加固地层的作用,是矿井防治水害的重要手段之一。工作面断层处注浆堵水过程如下:注浆材料:骨料+单液水泥浆,骨料+水泥水玻璃浆和骨料+水泥粘土浆。其中骨料的品种与粒径可视具体情况而定。注浆步骤:1.裂隙发育较均匀,含水层距地表近且厚度不大时可采用全段一次注浆;当注浆深度大,穿过裂隙大小不同的多个含水层时,可采用分段注浆。注浆方式包括上行式和下行式两种。2.注浆前压水。注浆压水目的在于将裂隙中松软的泥质充填物推送到注浆范围以外,从而提高注浆质量和堵水效果,见表4。3.下放止浆塞及注浆止浆塞放至规定位置后,接好输浆管,压缩胶塞止浆并经压水试验检查表4 裂隙与注水关系裂隙种类注水时间/min大裂隙1020中小裂隙1530好,即可进行注浆。注浆过程中应特别注意堵浆、跑浆及冒浆,对待不同情况采取相应措施。注浆参数1.浆液扩散半径:据现场经验,裂隙地层平均为4 m8 m。2.注浆压力:注浆压力的提高可以保证注浆效果。注浆压力应根据具体的地质条件确定,即根据现场试验反复确定。一般为静水压力的22.5倍。3.浆液注入量:该值可根据下式进行粗略计算。 公式(七)式中:浆液注入量,m3; 浆液扩散半径,m; 裂隙率,%; 注浆段高,m;浆液在裂隙内有效充填系数,0.90.95;浆液消耗系数,一般取1.21.3。4.注浆结束标准:注浆压力达到设计终压,一般为受注含水层水压的1.62.5倍,吸浆量小于80 L/ min,时间不小于30 min即可。说明:(1)综合应用两种技术,可以使排水效果更好。(2)含水断层较多的工作面应采取必要的防水措施,增添必要的排水设备;综采设备部件敞开处必须防水。(3)以上探放水技术同样适合采空区,必须加强采空区的探放水,才能确保工作面甚至全矿井的安全生产,决不可以顾此失彼。4 工作面断层处瓦斯突出机理和防治措施与各主要产煤国相比,我国的煤炭赋存条件较差。95%以上是井工矿,其中高瓦斯和瓦斯突出矿井占一半左右,煤层有自燃发火的矿井占50%以上。据统计,我国瓦斯突出地点发生在采煤工作面的概率为15.8%。近几年采煤工作面发生突出的次数有明显增多的趋势。据平顶山矿区统计,在55次突出中有43次突出发生在矿井构造小断层附近,占突出总数的78%,而且突出点煤层层理紊乱,煤体结构破坏严重,突出点构造煤厚度增加。尤其是中小型地质构造及构造尖灭端突出集中分布,如十二矿160采区受牛庄逆断层尖灭端的影响,己151716101采面掘进时发生10次突出。八矿己三采区受辛店正断层尖灭端影响,己151713170采面掘进时发生8次突出。两个采面受到两条断层的影响,形成矿区内两个高突面。4.1工作面断层处瓦斯突出机理瓦斯突出是煤与瓦斯突出的简称。瓦斯突出是由量的积累和采动的影响促成的。1)工作面上下煤层的采掘活动破坏了煤层的原有应力分布,使裂隙扩展,增大了煤体的分裂;2)改变了原有瓦斯的赋存状态,使游离态瓦斯增多;3)瓦斯的涌出更加剧了裂隙的扩展,使更多的裂隙贯通,形成了瓦斯流动的通路,最终上下煤层与回采煤层中的瓦斯形成一体;4)断层的存在为瓦斯提供了储存的“气罐”,随着周围瓦斯的汇集,裂隙内部瓦斯的压力逐步升高;5)工作面的推进促使了前方煤体的破裂,降低了煤体本身的抗压抗拉伸强度,增大了煤体的透气性;6)随着断层处靠近工作面侧煤体的不断回采,剩有煤体在瓦斯的压力下由压缩状态逐渐转变成拉伸状态,具有了弹性势能,达到极限时突出。因此,我们采取防治措施时,应从开“通路”和绝“气源”的角度出发。4.1工作面断层处瓦斯突出防治措施防突措施包括两大类。实施以后可使较大范围煤层消除突出危险性的措施,称为区域性防突措施;实施以后可使局部区域(如掘进工作面)消除突出危险性的措施称为局部防突措施。(一)区域性防突措施主要有开采保护层、预抽煤层瓦斯和煤层注水。在突出矿井中,预先开采的、并能使其他相邻的有突出危险的煤层受到采动影响而减少或丧失突出危险的煤层称为保护层,后开采的煤层称为被保护层。开采保护层是预防突出最有效、最经济的措施。开采保护层的关键是选择保护层。选择的方法如下:首先考虑上保护层,使采煤方式符合尽量符合下行的开采顺序。选择突出危险性低的煤层,开采该层时,也要采取必要的防突措施。矿井中所有可采煤层都具有严重突出危险时,也可以选择不可采的突出危险性低的煤层作为保护层。开采保护层时,应同时抽放被保护层的瓦斯。开采保护层配合被保护层的抽放,可以有效地增加瓦斯流通的路径,减少断层处瓦斯的聚集。(二)局部防突措施局部防突措施的主要作用是卸出或降低采掘工作面中的煤体应力和排放瓦斯。这些措施有松动爆破、局部抽放瓦斯、水力冲孔、排放钻孔、金属骨架、煤层注水、超前钻孔、卸压槽等。(1)松动爆破松动爆破是在工作面前方的应力集中区,打钻孔装药爆破,加快瓦斯的排放,降低断层中的瓦斯压力,预防工作面接近断层时造成突出。阳泉一矿3号煤层试验工作面的条件下,采用长钻孔控制松动爆破,既在回采工作面巷道打平行于工作面的爆破孔也取得了较好的效果。其参数为:爆破孔长度30 m、直径73 mm,钻孔倾角13、封孔长度710 m、爆破孔距工作面距离1315 m。(2)抽放瓦斯在断层密布采区,可以预防性的布置部分探放孔,测定瓦斯压力,分析断层的产状。确定有突出危险性的预兆,适当加大钻孔布置密度,强力抽放瓦斯。钻孔的布置方式有钻场平面扇形钻孔、底板岩巷穿层钻孔、正向平行钻孔和迎面顺层钻孔四种方式。结合工作面的巷道布置特点,并充分考虑预抽钻孔的边采边抽效率,选择适合的布置方式。屯城煤矿选择迎面顺层钻孔方式作为屯城煤矿优化钻孔布孔方式。具体布孔方法:利用工作面回风巷,向回采工作面切眼方向打迎面平行钻孔,钻孔方式为双排三花眼式,如图11示。(3)煤层注水在断层周围煤体中注水,可以扩展裂隙,挤出游离瓦斯,使瓦斯释放效果更好,同时使煤体湿润,降低了粉尘的浓度。其他技术不再论述。其中,防治瓦斯突出的关键在于科学预测和防治,提高操作人员的安全负责意识;坚决执行“四位一体”,实现“三专两闭锁”,有疑及时汇报,有险必须解决。灾害都可以解决。图1 回采工作面本煤层瓦斯抽放钻孔布置示意图小结:断层及其附带的地质灾害是困扰工作面推进的主要障碍,科学分析其形成机理,设计实施合理的防治措施,都可以予以很好的避免和解决,为提高工作面的产量奠定基础。一通三防重庆市南川市云华煤炭有限责任公司,在开采有煤与瓦斯突出危险的单一煤层时,没有建立瓦斯抽放系统,瓦斯传感器数量太少,有些作业地点没有安装,导致“1.16”特大煤与瓦斯突出事故的发生,死亡12人。国有煤矿安全欠帐多。多年来,由于行业管理弱化,煤炭生产经营困难,企业安全投入欠帐很多,据对45户国有重点煤矿和125户地方国有煤矿的调查测算,全国国有煤矿安全欠帐约505亿元。许多国有煤矿,经过几十年的开采,已进入衰老期;主要生产设备老化、超期服役的约占1/3。一些老煤矿井下使用的通风、提升运输和防爆电器等设备,许多还是上个世纪60年代的产品,不能保障安全。2007 年4 月6 日20 时35 分,湖南省煤业集团金竹山矿业有限公司一平峒煤矿25 采区回风巷发生煤与瓦斯突出事故,造成4 人死亡。2006年10月31日12时16分,靖远煤业有限责任公司魏家地煤矿西一采区1109综工作面在检修过程中回风系统发生瓦斯爆炸,当时该区域有35人作业。35人全部抢救出井。其中6人受伤(重伤1人)、29人遇难 2006年9月30日,黑龙江省鸡西市鸡东县哈达天龙煤矿发生瓦斯爆炸事故,死亡13人。 毕业设计任务书学院 矿业学院 专业年级 采矿工程 学生姓名 任务下达日期: 20xx年 1 月 20 日设计日期: 20xx年 3 月 15 日至 20xx 年 6月 21日设计题目: 陈四楼煤矿1.5 Mt/a新井初步设计设计专题题目:浅析采煤工作面断层处灾害机理及防治设计主要内容和要求:院长签字: 指导教师签字:Mechanism and control of ground residual deformation over longwall goafGUO Guang-li, WEI Kuang-ling, MU Bin-shan, Gao Jing-xiang, H E Guo-qing(1. China University of Mining and Technology , Xuzhou 221008 , China ;2. Chongqing University , Chongqing 400044 , China ;3. Qiwu Coal Mine , Jining 277606 , China)Abstract: The deformation of rupture rock mass in goaf is the main reason for ground terrene residual deformation.Based on field measurement and similar material simulation , the rupture strata structure and its residual deformation characteristics in the longwall goaf and its overburden are pointed out. On the basis of these achievements , the authors propose the mechanism of strengthening rupture rock mass ground and the control measures of deformation resistant structure. Using the case of main coal building in Xinzhuangzi Coal Processing Plant , this paper introduces the influence of strengthening rupture rock mass and deformation resistant structure.Key words: abandoned goaf ; residual deformation ; rupture rockmass ; deformation mechanism; deformation control1. INTROD UCTIONThe movement and dest ruction of overburden layers caused by underground mining changed overburden engineering geology characteristics and formed the engineering geology condition of extracttion subsidence rupture rock mass ground. Even by long time natural pressure after mining , these phenol mena of residual cavity , bed separation ,mining induced fissure can be seen in goaf and overburden. Subcompaction and gap with saturated water can also be seen in caved goaf . Under the influence of inner and external factors (for example ,ground stress , underground water , superimposed load of new building) , the rupture rock mass will produce second movement and deformation , which is a serious threat to ground buildings safety.This is the main potential safety hazard that restrains large scale application of terrene in abandoned goaf .The deformation of rupture rock mass in goaf is the main reason for residual deformation in collapsed area terrene. Clarifying structure and deformation characteristic of rupture rock mass in goaf , predicting terrene residual subsidence and deformation , adopting suitable measures to strengthen rupture ground and designing reasonable building structure are the basic research directions to guarantee the safety of the buildings above abandoned goaf.2 RUPTURE ROCK MASS STRUCTURE AND RESID UAL DEFORMATION CHARACTERIS TIC OVER LONGWALL GOAFAfter extracting underground ore body , the overburden will move and deform t- hat induces thegreat change of the property and forms of rock ,and will form a new goaf rupture rock mass structure system composed of caving zone , fracture zone and inflection subsidence zone (Fig. 1).Fig. 1 Rupt ure rock massst ruct ure over longwall goafAccording to a large amount of field inspectionand simulation research results , abandoned goafsliven up and the mechanism of extraction rupture ground unstability can be analyzed as follows :1) The rupture rock pieces above the edge of longwall goaf articulate with each other and form a construction similar to half arch struct ure with one of its foot t- rending to coal wall. In this structure ,the first and second rupture rocks play key role in the relatively stable structure of rock mass above goaf. If these key rocks lose their stability , they will influence overburden , and produce strata movement and deformation again , then extent toterrene further.2) The block beam above longwall goaf results in the difference of the crack rockps compactivities in various positions of caving zone. There is unstowed cavity around open off cut , terminal line ,up and down crossheading ( around the edge of goaf). From edge to center of goaf , caving zonecan be divided into sub compaction area , cavingrock accumulated area , caving rock compaction area and full compaction area.3) In the super critical extraction area above the middle of goaf , caving rupture rock mainly supports vertical pressure stress. It can be compacted by natural pressure as time passing , but since rupture rocks are beyond retrieve , the fissures among rocks will exist forever. It will be compacted again when being suffered additional burden.4) For the difference of stratum bedded deposit characteristic and each rock formation mechanical property , a large amount of bedded separation fissure will be produced in inflection zone of overburden. Under the influence of underground water and external force , especially vertical burden ,these bed separation fissures may be compactedand closed , which will lead to the subsidence of terrene.Based on the analyses above , we can divide t he“liven up ”of rupture rock mass in abandoned goaf into four types :1) Under the effect of overburden , the rupture rock in goaf body has long term slow creeping deformation.2) Under the effect of underground water and air , the rupture rock in goaf will be effloresced , its intensity will be attenuated , and the rupture rock can be compacted again under overburden.3) Since the intensity attenuation of rupture rock and residual coal pillar begin , the overburden above mining dist rict will lose stability again though it is stable before.4) Under the effect of external forces , the rupture rock mass above mining dist rict will lose structure stability again. The external forces mainly include earth quake force , tectonic stress caused by region geological structure , disturbance stress caused by exploding or mining , addition burden on the surface , etc.According to the research results of similar material physical analogy and finite element method , under the condition of deep goaf , the residual deformation of terrene is mainly a slow subsidence course and its uneven subsidence is limited , so reinforcing buildingsp ability to resist deformation is the main technological measure to guarantee its safety. Under the influence of external force , the unstability of the secondary block beam or key strata of overburden mass in goaf is the main cause for serious terrene subsidence in shallow goaf . So strengt hening the block beam structure above goaf and key strata , raising the carrying capacity of rock mass balanced structure and increasing the steady of the balanced structure are the main methods to strengthen the rupture ground above abandoned goaf .3 TREATMENT OF RUPTURE ROCK MASS OF SHALLOW LONGWALL GOAFUnder the influence of external force , the destabilizing of the secondary block rock beam or key strata of overburden is the main cause for serious ground subsidence over shallow goaf . So strengthening t he block beam structure or key strata above goaf and raising its bearing ability and stability are the main ways to control rupture foundation rock mass deformation over abandoned workings. These technological methods mainly include the following six types.1. Back filling and grouting in whole goaf The whole goaf and mining induced fissure of overburden should be backfilled completely by cement , tailings , flyash , sand or clay , etc. This method can get rid of a hidden peril of ground subsidence. 2.Grouting concrete column for partial support Drilling large diameter borehole on the construction field forms the grout cement or reinforced concrete column to provide surface building support . The column must pass through rupture rock body and reach the integrate rock body beeow abandoned mine workings.3.Grouting to strengthen block beam in fracture zone Grouting to stow the bed separation and crack fissure in fracture zone can st- rength the compound block beam structure into a whole continuous half arch rock beam over goaf . This measure is suitable for strengt hening ground around goaf border with large cave and sub stowed area. It can prevent half arch block beam above the edge of goaf from losing stability. 4.Grouting to strengthen basement in sagging zone Grouting to strength basement in sagging zone below the building can integrate rupture rock body into a whole to guarantee the buildings p subsidence uniformity.5.Accumulating pressure processing This measure is to prepress the ground by accumulating debris or sand , etc , on the area above abandoned goaf , which will make the potential differential settlement of ground take place , then the ground will be compacted and the intensity will be improved. Moreover the subsidence will reduce in practical project later. This method requests that effective load shouldnpt lighter than additional load caused by new buildings.6.Using high energy rammer to deal with shallow rupture rock body Using high energy rammer to deal with shallow rupture rock body will compact the fissure and bed separation in shallow ground , and increase the load carrying capacity of shallow ground. This method is mainly suitable for the foundation soilt reatment of general civil buildings constructed on the middle area of goaf .4 DESIGNING MEASURES OF ANTI2DEFORM ATION STRUCTUREUnder the condition of certain mining deep and even load , longwall goaf seldom produces violent subsidence , and the distribution of residual subsidence is continuous and gradually changed.Buildings above abandoned goaf undoubtedly will be influenced by ground residual deformation. The ground deformation , transiting to the upper structure of building through foundation , will make the structure have additional stress and deformation. Adopting the designing measures to improve the coordination relation among the base , foundation and upper structure is the basic method to protect buildings on goaf. By analyzing the coordinate relation between the ground subsidence and buildingps deformation , we conclude t he following three principles during designing buildings with deformation resistant structure .1.Structure yielding measuresThe technological measures are adopted to absorb part of terrene deformation or to let building have enough flexibility to adapt buildingps unbalanced subsidence and deformation , and to reduce the additional stress caused by terrene deformation. These measures include setting deformation gap , reducing unit length of building or designing flexible building with hinge joint steel frames , which can change the positions related to each other.2.Structure rigidity strengthening measuresThese measures are to raise stiffness and in tegrity of building units to increase their resisting ability of terrene deformation , which include strengt hening stiff ness and intensity of each unitps ground , adding structure components , strengthening component , etc. We can design adjustable base , for example , ground composed of thicker plate or concrete base row. We can also use ram to make the upper structure back to its original position if uneven subsidence happens.3.Joint structure rigidity strengthening and structure yielding measuresFor large scale indust rial buildings , the needs of equip mentinstallation and its technological process must be considered , in order that structure rigidity strength- ening and structure yielding measures can be applied entirely. Under this circumstance , we should use some synthesize methods to meet the needs of p- roduction safety.5 PROJECT INSTANCE1.Project general conditionsA main building of a coal dressing plant with crib and bar foundation is 73.5 m long , 35 m wide and about 40 m high. It is a multilayer and multispan reinforced concrete frame structure. This building , with complicated inner structure , has lots of dressing equipment and is sensitive to terreneps unbalanced subsidence and horizontal deformation. In the west and north below the main building is A1 and A3 coal seam goaf (the relative position of goaf and main building can be seen in Fig.2 ,and this coal mine had been extracted from 1951 to 1962. The extraction depth of seam A3 is 48.8 m ,minable height is 3. 65 m , and the extraction depth of seam A1 is 62 m , minable height is 2.2 m ,stratatilt angle is 2225. Coal mining method is long wall mining on the strike , using breakage method to deal with roof . Reconnoiter research indicated that the rupture rock mass caused by mining develop ment area has reached to the southwest corner of the main building. Its development range is also shown in Fig. 2. The up face of gap development area is only 15 m deep to surface. Around the edge of goaf , there are residual cavities that caused overburden to be seriously damaged and some ground stability to be relatively poor.Fig. 2 Surface under ground contrast plan near main dressing building2.Using consolidation grouting to deal with mining rupture rock ground According to the characteristic of mining rupture foundation , the half arch block rock beam structure in cracked zone above goaf can best rengt hened by using consolidation grouting method , which makes the foundation form a integrated , stable half arch rock structure. Designed grouting area is 637 m in this project and the average stage height of grouting is 8 m. In practice ,seven grouting holes have been drilled. The mate rial used in grouting is 425# Portland cement .3.Measures of designing deformation resistant structureIn order to guarantee dependability of designing , a space finite element model is adopted to analyze the structures with 6 floors and 8 floors of main building. The model analyzed different basis forms , considering inner force and section adjust ment under 10 kinds of combination circumstance ,such as static burden , dynamic burden, earthquake force , the influence of ground deformation and wind burden. The purpose of the analyses is to select the suitable structure stiffness. After many times of analyses and adjust ment , the dist ribution of reinforcement bar was designed. The flexible measurements were used in both units with 8 and 6 floors. Between the two indispensable units , 100 mm deformation fissure has been left .4.Implementing effectTo verify designing reliability and to ensure safety , the ground subsidence and structure stress were monitored. According to the analyzing of the main building ground subsidence and internal force , we can draw the conclusion that the ground subsidence is even. Basis reactive dist ribution is even and the change of basis reinforces inner force is accorded with normal law. These inform that strengt hening region rupture ground and deformation resistant structure are successful , and these methods guaranteed the main buildingps safety.6 CONCL USIONS1) The deformation of rupture rock mass in goaf is the main reason leading to collapse area terrene residual deformation. Under the condition of deep goaf , the major terrene residual deformation is a slow subsidence process , and reinforcing buildingp deformation resistant ability is the main way of potecting its safety. 2) Under the influence of external force , the rupture rock mass losing its st- ructure steadiney is the main reason leading terrene to seriously subsidence deformation in shallow goaf. Strengt hening half arch block beam above the shallow goaf ,increasing the steady and carrying capacity of rupture rock mass ground are the main methods to deal with unstable ground above abandoned goaf .3) Adopting struct ure rigidity strengt hening and yielding measures to resist deformation ,improving the coordinate deformation relation among buildingps basis , ground and super structure are the basic methods to protect building in goaf safety.(4) Practical example indicates that the safety of large sized indust rial buildings above shallow goaf can be protected after grouting and using deformation resistant structure.中文译文长壁开采采空区上部地表残余变形的机理与控制摘要:采空区岩层破裂变形是导致地表残余变形的主要原因。基于现场测量和相似材料模拟,采空区及其上覆岩层岩石断裂构造及残余变形特性已被揭示。以此为基础,作者提出了岩层破碎的加强机制和抵抗变形的控制方法。本文将以新庄子煤炭加工厂的主要建筑物为例介绍岩石破碎的影响和抵抗变形的结构。1.导言地下开采导致的上覆岩层移动和破坏改变了上覆岩层的工程地质特性并形成了开采下沉破裂岩石面的工程学地质情况。即使开采后在长时间自然压力作用下,采空区及其上覆岩层中仍能看到残留空间、地层分离、开采裂缝等现象。跨落的老空区内则会出现分段压实和饱水裂隙。在内外因素(如地面应力、地下水、新建筑的阶层载荷等)的影响下,破碎岩体将产生二次移动和变形,这会对地面建筑的安全形成严重威胁。这是抑制废弃采空区上土地应用的主要安全隐患。塌落区域地表残余变形的主要原因是采空区岩石破碎变形。弄清采空区岩石破碎结构和变形特性,预测地表下沉与变形,采取适当措施加固破碎岩层,设计合理的建筑物结构,是保证采空区上地面建筑安全的基本研究方向。1.长壁采空区上岩石破碎结构与残余变形特性地下矿体被开采之后,上覆岩层会移动变形导致岩石性质和形态的强烈变化,并会形成由跨落带、裂隙带、弯曲下沉带组成的新的采空区岩石破碎结构体系。(图1)根据大量的现场测试和模拟测试结果,废弃采空区的“活跃”和开采破碎
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。