采煤方法图.dwg
采煤方法图.dwg

葛亭煤矿设计【含CAD图纸+文档】

收藏

压缩包内文档预览:
预览图
编号:37123266    类型:共享资源    大小:23.67MB    格式:ZIP    上传时间:2020-01-05 上传人:机****料 IP属地:河南
50
积分
关 键 词:
含CAD图纸+文档 煤矿 设计 CAD 图纸 文档
资源描述:

压缩包内含有CAD图纸和说明书,均可直接下载获得文件,所见所得,电脑查看更方便。Q 197216396 或 11970985

内容简介:
专题部分承压水上采煤技术研究刘园(中国矿业大学 江苏 徐州 01080112)摘 要:随着煤炭科学技术水平的不断进步、煤矿开采技术水平的不断提高,承压水上安全采煤技术也在不断发展。承压水上采煤的问题越来越来显出重要性和迫切性。本文叙述了承压水上采煤底板突水因素与类型,并将遥感技术应用于岩溶陷落柱分布的预测中。关键词:承压水上;底板突水;采煤技术;采煤方法1 地下水与含水层1.1定 义地下水系:指地面以下所有的水。由于地下水水文工作者主要研究饱和带中的水,他们利用地下水运动这个术语表示饱和带中的水。在农田排水及农艺学中,这个术语还表示潜水面以上不完全饱和地层中的水。本书中,利用地下水这一术语主要表示饱和带中的水。承压水上采煤;又名带压开采,是指开采煤层底板含水层中承压水头高度高于回采工作面水平条件下的回采。含水层:含水层是指具有下述两种性质的地层或岩层;含有水;一般的野外条件下允许大量的水在其中运动。阻水层:与含水层相反,是一种可以含水,但在一般的野外条件下,不能大量导水的地层。从实用的观点出发,阻水层可以认为是隔水层。隔水层;存在于含水层与开采煤层底板、巷道和采空区之间的能阻碍或减弱水流动的岩层,该岩层内的孔隙不连通,地下水无运动条件,常以吸着水存在,无重力水。亦称不远水层或保护层。阴水系数:又称阻水系数,是指各种岩石的等值隔水层厚度总和()减去等值隔水层厚度的修正值(),除以水压(p)所得的值,即V隔水系数;等值隔水层厚度的修正值,在确定防水煤柱时,的值为10m,在确定主要岩层含水层的相对隔水层厚度时,值为8m,其他情况下,值为5m;P水压,MPa;等值系数。;M。 为选取标准单位厚度(如泥岩)的隔水一阻水作用值;为与Mo相比较的不同质量而单位厚度相同的岩层的隔水一阻水作用值。部分等值系数见表1-1。突水系数:指水压值与隔水层厚度的比值,即 (1-1)T突水系数,MPam;p水压值;MPa;m隔水层厚度,m 。弱透水层:与含水层相反,弱透水层是一种导水速度十分缓慢的半透水层。通常称为越流地层。非含水层:是既不含水又不导水的地层。空隙空间:岩石中没有被固体颗粒占据的那一部分叫做空隙空间(或孔隙空间、孔隙、空隙,裂隙)。空隙空间合有水和(或)空气。在地层内只有连通的空隙才能起导水通道的作用。图11表示岩石空隙的几种类型。空隙的大小可以从巨大的石灰岩洞穴到水主要靠吸附力存在于其中的微小的亚毛细孔洞。岩石的空隙一般分为两种,即原生空隙与次生空隙。含水层的垂向分布;地面以下的水在垂宜剖面上的分布可以按照空隙空间中含水的相对比例划分成两个带:饱和带与充气带。饱和带中的全部空隙充满着水。充气带位于饱和带之上,其中同时包含着气体(主要是空气及水蒸气)和水。图12表示地面以下水的分布概况。水(例如大气降水或灌溉水)自地面渗入,在重力作用下向下运动和聚集,最后在某些不透水地层之上充满岩石中所有相互连通的空隙。在不透水地层之上形成了饱和带。饱和带的上界面为潜水面,潜水面是一个其表面上压力等于大气压力的面。1.2含水层的分类大多数含水层是由非固结或部分固结的砂砾石组成,它们分布在废矿井、古河道、平原和山谷之中。其范围大小不同。厚度也可以从几米到几百米。在砂和砾石固结类岩石中,由于颗粒被胶结在一起,渗透性减小。在世界的许多地方,厚度、密度、孔隙率和渗透性有很大变化的石灰岩地层是重要含水层,尤其在大部分原生石灰岩被溶蚀迁移的时候。石灰岩中的洞穴可以从微小的原生小孔到形成地下河道的大裂缝及大洞穴。由于水流沿断层及型隙溶解岩石,因而随着时间的推移,它们被不断扩大,从而增大了岩石的透水性,最后石灰岩地区发展为岩镕(喀斯特)地区。就大范围而言,喀斯特含水层的宏观性状大致与砂砾石含水层相似,是煤矿带压开采的最大威胁。火山岩、玄武岩是相当好的含水层。玄武岩含水层的孔隙也许比松散砂砾石含水层小,但由于大多数孔穴具有连通的特点,故其渗透性可以比砂砾石含水层大很多倍。以岩床、岩脉和岩颈等形式出现的许多浅层浸入岩,渗透性都很小,其中绝大多数不含水,因此可以作为地下水流的阻隔边界。结晶岩与变质岩属于相对不透水层,它们构成弱含水层。当这类岩石出现在地表附近时,由于风化与破碎,渗透性会逐渐变大。粘土及粘土与粗粒物质的混合物,虽然孔隙串一级很高,但由于孔隙小,故为相对不远水层。含水层可以看成是受降水和河流自然补给或通过井孔及其他人工方式补给的地下水水库。含水层中的水可以通过泉和河流自然地排泄,也可以用人工方法从井中排出。含水层可以根据潜水面是否存在划分为无压含水层和承压含水层两大类。1.2.1承压含水层承压水是指充满于二个隔水层之间的地下水。由于隔水顶板的存在,它的补给区小于分布区,动态较稳定,不易被污染,承受静水压力,当地形适宜时,钻孔开凿到含水层后,水即可喷出地表,形成自流,故承压水又被称为自流水。承压水的形成首先决定于地质构造,在适宜的地质构造条件下,无论孔隙水、裂隙水、岩溶水都可以形成承压水。坯适宜于形成承压水的地质构造大体可分为向斜构造和单斜构造,这二种地质构造,在不同的地质发展历史过程中,可以被一系列的榴曲和断裂所复杂化因此可以看出自流水的形成与地区的地质发展史有着密切的关系。适宜于承压水形成的盆地构造或向斜构造在水文地质学中称为自流盆地。自流盆地按照水文地质特征可分为3个组成部分:。补给区,6承压区,c排泄区,如图13。承压含水层的补给区有地表补给、潜水补给及承压水含水层之间的补给,如图14。图16所示。承压水的补给来源可以是多方面的。首先来自面头区的大气降水补给。补给量大小主要取决于露头区范围大小、降水量、降水性质、出露地段地形、含水层透水性等因索。当露头区内存在地表水体时,地表水也可成为承压水的补给水源。地表水有时通过场洞,深切河谷,隔水层尖灭的“天宙”地段渗漏补给承压水。当承压水补给区位于潜水层下面,潜水则可泄入承压含水层。潜水也可通过隔水顶板尖灭地段或弱透水层越流补给承压水。生活、工业废水有时大量酒人承压含水层,成为其补给源。当包含有几个承压含水层的大型自流盆地或自流斜地,通过导水断裂或弱透水层的越流作用,各承压含水层之间可以发生相互补给或排泄的现象。图17为上升泉的形成条件示意图。一般情况下,承压含水层的储水量大,压力高出的威胁日趋严重,是矿井突水的主要含水层。1.2.2潜水含水层潜水是埋藏在地表以下第一个稳定隔水层以上,具有自由水面的重力水。潜水一般埋藏在第四纪松散沉积物的孔隙中和裸露基岩的裂隙、镕陈中。潜水的自由水画称为潜水面。潜水面至地面的铅直距离为该处潜水的埋藏深度。水面的绝对标高称为该处的潜水位。由潜水面至隔水底板顶面之间,均充满重力水,称为潜水含水层,其距离则为含水层的厚度,如图18所示。多数情况下,潜水的分布区就是其补给区,二者完全一致。潜水面的形状大多为倾斜的抛物线型,在特定条件下也可以是水平的。潜水面坡度变化可以很大,首先与地区的地貌形态有关,在强烈割切的山区。沿山坡一带可达百分之几,在乎坦的平原区中则只有千分之几。一般地面坡度愈大,潜水面的坡度也愈大,二者经常一致,而且潜水面的坡度总是小于地面坡度。其次含水层的变厚或因含水层透水性变好时,潜水面坡度也会趋于平缓在盆地或洼地可形成潜水湖,如图18、图19所示。潜水的补给主要是大气降水和地表水,有时通过断裂构造带由承压水补给。其排泄一般为蒸发或补给于地表河流。由于地形的影响使潜水形成压力梯度而发生径流。潜水含水层也是煤矿开采的一大威胁,尤其是在径流带、自流盆地处,如裂隙或构造断裂发育,可涌人矿井而发生淹井事故。1.2.3越琉含水层不论是承压含水层还是无压含水层均能通过其上或(和)其下的封闭地层获得水或漏失水,这种含水层叫做越流含水层。虽然这类封闭地层具有较高的渗透阻力,但是当它们在大范围内与所研究的含水层接触时,大量的水可以通过它们流入或流出含水层。在各种情况下,越流量与越流方向均受弱透水地层两侧测压水头差的控制。显然,在每一种具体条件下,含水层上覆的某个地层是不透水层,还是弱透水层或仅仅是渗透性与所考虑的含水层不同的另一种透水地层并不是一件容易的事。通常,考虑成弱逆水层的地层(即越流层)都比主含水层的厚度小。位于弱透水地层之上的潜水含水层(或其一部分)是一种有越流的潜水含水层。至少有一个弱透水封闭层的承压含水层(或其一部分)叫做有超流的承压含水层。图110表示几种含水层和观测孔。上部为潜水含水层,其下有两个承压含水层。在补给区含水层B变为潜水含水层。含水层A、B和c的一部分是有越流的,越流方向流量的大小取决于每个含水层的测压水面高度。由于潜水位和承压水头高度的变化,各水层承压和无压部分之间的界线可以随时间而变化。潜水含水层的一种特殊信形是上层捕水含水层。当在潜水面和地面之间分布有局部不进水(或相对不透水)时,在这种不适力地层之上就会形成另一种地下水体上层滞水含水层。沉积物中的土及亚粘土透镜体经常有薄的上层滞水含水层,有时这些含水层只能存在一个比较短的时间,因为上层滞水可以流人下部的潜水含水层。1.3含水层的性质含水层的导水、贮水和给水度是含水层的主要性质。水力传导系数表示在水力梯度作用下台水层传导地下水的能力,它是多孔介质和其中流动着的流体的一种组合性质。如果含水层中的流动基本上为水平流动,则含水层的导水系数表示通过含水层整个厚度的导水能力。导水系数等于含水层的水力传导系数与含水层厚度的乘积。含水层的贮水系数表示存贮在含水层中的水量变化和相应的测压面高度变化之间的关系。承压含水层的贮水系数定义为水头降低(或升高)一个单位时,从水平栈截面为一个单位的含水层垂直柱体中释出(或存入)的水的体积,如图111所示。在潜水含水层的情况下,水实际上是由于潜水位降低而从空隙空问中排出并为空气所代替,然而重力排水并不能排出包含在空隙空间中的全部水。一定量的水在分子引力与表面张力的支持下能够抗住重力而保持在固体颗粒之间的空隙中。因此,潜水含水层的贮水系数比孔隙串小,其差称为持水串(土样中反抗重力作用而保持下来的水分与土样总体积之比)。为了反映这种现象,通常把潜水含水层的贮水系数称为给水度。由含水层和水的压缩性所引起的弹性贮水系数要比给水度小得多。具体地说,大多数承压含水层的贮水系数在loIo之间,而大多数冲积层的给水皮为10x。这说明排出(或注入)相同体积的水,承压含水层中水头高度的变化要比无压含水层中水位高度的变化大得多。在定义承压含水层的贮水系数时,假定不存在时间延迟问题,并且认为水是随着水头的下降而瞬时释出的。然而,尤其是在纫颗粒物质中,由于低水力传导系数限制着水自贮存中释放,因而可以发生明显的时间延迟现象。对于潜水含水层来说也是如此,因为疏于过程槽要一定的时间。表示越流含水层特征的一个参数是弱透水层(又称半封闭层)的阻力系数。阻力系数定义为弱透水层厚度与其水力传导系数之比。当这值较大时,通过弱透水层的越流量则较小。另一个参数叫做越流因数。它等于含水层的导水系数与弱透水层的阻力系数的乘积的平方根。在确定某一地层是否为含水层以及为何种类型的含水层时,上述各种参数可作为指标。2 底板突水类型煤层底板突水实质是煤层下伏承压水沿采煤工作面底板隔水层岩体内部通道突破底板隔水层的阻隔,以突发、缓发或滞发的形式向上涌人工作面采空区的过程。研究它的发生、发展规律是进行突水预测预报的前提,是制定合理开采方案和预防措施的依据。因此,研究突水的机理,对突水进行分类是很重要的。同时各种不同类型的底板突水在其成分上是不同的,为了查明底板突水产生的原因和条件,首先因对底板突水进行分类。2.1按突水地点分为巷道突水和采场突水。巷道突水多以构造破坏为主,承压水通过断裂或构造破碎带进入底板,形成充水,一旦巷道揭露出来后,承压水就迅速涌入。采场突水多以采矿破坏为主,矿山压力破坏和消弱了底板隔水层的厚度和强度,造成与汗水层的密切水力联系。2.2按突水的动态分为爆发型、缓冲型和滞后型三种。爆发型主要是由于存在充水断层加上突水处的底板隔水能力很弱引起的,其突水的特点为来势猛、速度快和冲击力强等。缓冲型主要是由采矿、构造破坏等迭加作用所造成的。由于突水处有一定的隔水能力,突水来的慢,量由小到大。滞后型主要是承压水沿裂隙长期冲蚀及矿压持续作用的结果。2.3按突水量大小分为特大型突水、大型突水、中型突水和小型突水,如表2-1:表2-1 按突水量大小底板突水分类突水类型小型中型大型特大型突水量/()503 影响底板突水的主要因素煤层底板突水有两个必要条件:一是要有突水的水源条件,二是要有能进行突水的通道条件。3.1水源条件水源条件包括水量和水压,水量愈丰富,突水条件越大,危险也就愈大。水压是突水的动力,处于封闭状态的岩溶水不断溶蚀、冲刷裂隙,形成通道,由含水层进入底板隔水层,水压愈大,破坏愈严重。3.2地质构造地质构造主要指的是断裂构造,它是突水的主要控制因素,断裂构造的存在破坏了煤层底板的完整性,降低了岩体本身的强度,削弱了底板隔水层阻抗变形的能力。导致一定厚度的断层或断裂破碎带的存在,如果为充水构造或导水构造,那么当工作面推进到该断裂带,甚至接近该断裂带时,都将会导致承压水的直接涌出,造成突水事故。3.3隔水层的阻水能力底板隔水层是唯一起阻隔突水作用的因素,隔水层的阻力能力取决于隔水层的强度、分层厚度和裂隙发育程度。在其他条件一定的情况下,隔水层厚度越大,强度越高,突水的机率也就越小。3.4矿山压力开采引起的支撑压力诱发底板突水,有以下规律:(1) 无周期来压或周期来压不明显的顶板,支撑压力较小,对底板破坏较轻;有周期来压的顶板,底板突水多发生在初次来压或周期来压期间,只是由于来压期间支撑压力较正常推进时大,对底板破坏严重。(2) 突水点位置多数在工作面后部采空区边缘附近。这些位置处顶板垮落不充分,底板处于膨胀状态,断裂张开,阻水能力最弱。(3) 顶板初次来压之前,在开切眼附近,由于基本顶大面积较长时间的悬露,或直接顶岩层跨落后不接顶,使底板岩层形成较大的自由面,给底板岩层的移动与破坏创造了条件。(4) 工作面推进速度慢,工作面突然停止推进或在停采线处容易发生突水事故。这是由于支撑压力作用的时间较长,底板破坏较严重。工作面推进速度快时,采空区底板未形成较大裂隙就会由膨胀状态变为压缩状态,这有利于防止底板突水。4 承压水体上采煤4.1承压水体上采煤底板突水的一般规律经过长期的研究和实践,我国已经基本能掌握影响承压水体上采煤底板突水的主要因素及一般规律。主要包括以下几点:(1)突水水源为底板强承压含水层,大多为富水性好、水压力大的灰岩含水层。(2)在开采工作面,突水点大多分布在工作面煤壁附近、上下平巷边缘以及切眼、停采线处的煤壁附近。(3)突水事故与构造特别是断层密切相关,70%以上的突水事故都与构造影响相关。(4)底板承压含水层水压、底板隔水岩层的厚度及隔水性能对底板突水有显着影响。底板承压含水层水压越大,底板隔水岩层的厚度越小,隔水层的阻水能力越差,越容易发生突水事故。(5)底板突水与采动矿压显现有很强的一致性,而且绝大多数都发生在顶板来压前后,顶板的初次来压和二次来压时,发生底板突水事故占总底板突水事故的 90%。(6)底板突水与原始导高有一定关系。底板含水层地下水未受采动影响时,沿隔水岩层底部导水裂隙上升一定高度,这个高度称为原始导高。原始导高越大,越容易发生底板突水。4.2承压水体上采煤技术在承压水体上采煤,要根据具体的地质和开采技术条件,选择合适的治理方案。根据我国近几年来的实践,主要有以下几种方法:(1) 疏水降压技术。疏水降压是指煤层顶底板含水层或煤系地层含水层,通过地表及地下疏干方式,并借助疏水巷道、抽水钻孔和吸水钻孔及相应的排水设备,使煤层顶底板含水层水压降低至采煤安全水压。(2) 帷幕注浆堵水技术。帷幕注浆堵水是煤矿实现疏堵结合的有效措施之一。帷幕工程的目的是使外来水源中的大部分截堵在煤层开采范围之外,而开采区域内部可以通过疏水降压等方法实现安全回采。(3) 带压采煤综合治理技术。带压开采就是利用隔水层采煤。一定厚度的隔水层具有一定抵抗水压的能力,并可以安全开采到一定深度的煤层。带压开采无需事先专门排水,一般也可以做到安全生产,但是,在水文地质条件复杂的地区,却存在底板突水的危险,并且当开采深度延伸后,水压增大到隔水层厚度不能抵抗的时候,又会给带压开采带来很大的难度。因此,这里提出了带压开采综合治理方案,其特点和内容主要包括: “以防为主,带压开采,适当疏排,辅以截堵”。具体说就是以防水为指导思想,在查清区域和矿井水文地质条件的基础上,进行带压采煤。在采前和采煤过程中,可在矿区外围截堵地下补水源,尽量减少奥灰水的动储量; 同时,在带压采煤中,根据矿井涌水量大小和水压大小,进行适当的疏水降压,最终实现安全开采的目的。4.3底板突水的防治措施底板防治水技术措施可根据具体的地质水文条件来选择,同时还受到矿井的生产实际、采煤方法以及经济投入能力等多因素制约,因此需要根据多方面的综合分析后,并在试验的基础上,确定较为合理的底板防治水技术措施。(1) 全矿井疏水降压。从理论上看,当底板承压含水层水压过大,水体上煤层开采安全性不足时,可以采取疏水降压等技术措施,降低底板承压含水层水压,将其控制在安全范围之内,从而消除底板承压含水层的突水威胁,解放水体上压煤资源。(2) 局部疏水降压。当底板承压含水层富水性好,或补给条件好、动储量大、全矿井疏降底板承压含水层难度很大,不具备技术经济合理性时,在一定条件下,在开采工作面周围局部疏水降压,使开采工作面底板含水层在开采期间和开采后一定时间内持续处于安全范围内,可有效避免底板突水。(3) 底板隔水层注浆改造。在底板隔水岩层隔水性能差、有底板突水危险时,采用注浆方法加固改造隔水岩层,主要是通过钻孔进行注浆,堵塞石灰岩溶洞,加固破碎带和裂隙带,并封闭奥陶系石灰岩的补给通道,以实现在承压水体上安全采煤。4.4承压水上采煤方法4.4.1条带采煤方法关于条带开采法王作宇(1993)已作了详尽的研究,此方法是把煤层划分为比较正规的条带状进行开采,采一条,留一条,其回采率低,工作面搬家次数较多,不利于机械化开采,但由于条带采煤法能够大幅度降低覆岩移动强度,稳定底扳,特别是在煤层上覆岩层中有厚层状坚硬岩层,煤层底板岩层也较坚硬时,效果更为显著。所以条带法开采是承压水上采煤的主要开采方法之一。4.4.1.1条带煤柱的图设原则 (1)能使煤柱起到长期支撑覆岩的作用,不被压垮或破坏。 (2)在一般情况下,条带煤柱宽高比为:充填条带大于2,冒落条带大于50 (3)煤层底板只发生轻微的、均匀的移动和变形,不产生较大的破坏,仍能起到阻止承压水上移的作用。4.4.1.2条带开采法分类(1)冒落和充填条带开采。采用全部垮镕法管理顶板的方法称冒溶条带法。日落条带法则具有工艺简单等优点。采用充填法管理顶板的开采方法称为充填法。充填物不仅可以支承顶板,更主要的是对保留煤柱的维护,由单向受力状态转变为三向受力状态,提高煤往的承载能力,有助于顶板的长期稳定。(2)定采留比和变采留比条带开采。在一个工作面内采留比是固定不变的,叫定采留比条带开采,定采留比的条带布置要求严格,适用于采区地质条件比较简单的地段。在一个工作面内采留比不是固定的,叫变采留比条带开采。变采留比的条带布置灵活,在采区地质条件变化较大的地段采用有一定的优越性。(3)倾斜条带开采和走向条带开采。倾斜条带开采的条带长轴顺煤层倾斜布置。它的适应性较强缺点是工作面搬家次数频蟹。走向条带开采的条带长轴顾煤层走向布置。它适应于倾角较缓的煤层,解决了工作面搬家次数领繁问题,但增加了巷道掘进量。正确确定条带尺寸,是取得条带法开采良好效果的决定性因宏。在确定条带尺寸时,必须道守两个基本原则,一是确保开采后条带煤柱应有足够的强度和稳定性,以承受上覆岩层的压力,减小覆岩的矿压显现。二是条带开采的每一采出宽度,其尺寸应足以使底板岩层移动员小,最大限度地减小底板破坏深度。生产实践及理论研究证明,煤柱尺寸取决于采深、采厚、采宽,上覆岩层容雹、煤的抗拉强度、底板水压值等因索。采宽则取决于煤往尺寸、顶底板的力学特性及底板水力值等。4.4.2短壁式采煤方法工作面长度是影响底板破坏深度的主要因素之一,减小工作面长度是控制底板突水的主要开采措施。水文地质条件较复杂的矿区如采用长壁开采存在底板突水危险时,可用短壁式开采,以减少突水几率保证安全采煤。因为短壁式采煤法可有效地减弱底板破坏强度,缩小破坏深度,增大中部未破坏层的厚度,有效地阻止底板岩溶承压水的浸入。在相同工艺和水文地质条件下,走向长壁工作面的走向长度改变后不会导致矿压的改变,因为采后印70m以外的压力恢复区可表现为采后压力常态区;基本接近来前状态。对矿压大小起作用的是采后o60m左右的老顶恳顶距及堵落情况。但当工作面长度变化时,底板抗水压的能力逐渐降低,在印m以外,抗水压能力幅度减小不明显,如图4-1所示。从底板破坏带实测资料分析中得知,工作面条件基本相似的情况下,工作面长度增加33倍,底板破坏深度增加4倍,在底板隔水层厚度不变的前提下,减小工作面长度,可减小底板破坏深度,增大相对隔水层厚度,增强抗水压能力。因此,短壁式采煤法在防止底板突水方面具有重要作用。4.4.3 采区内分段后退式采煤方法除上述介绍的方法以外,承压水上采煤常用的方法还有:琉水降压法、帐幕法、底板隔水层带压开采法等。一般情况下,由于矿区水系庞大、补给好、水头高、奥灰水层厚,疏水降压法和帐幕法实施的可能性较小。这些方法对地下水资源破坏严重,是环保法所不容许的。因此,寻求安全、高效的承压水上开采方法是煤炭工业面临的重大课题。图4-1 工作面斜长(L)与底板承压水压力(p)的关系曲线4.4.3.1 带压分段后退式开采布局目前国内外广泛采用的开采顺序在倾斜方向上有前进式和后退式两种,但在承压水上采煤中,大都采用前进式。这种方法具有先易后难,先浅后深,逐渐实现安全带压开采,初期投资小、见效快等优点,缺点是;避灾困难由于每个工作面总是处于采空区的最低位量,其下仅有容量有限的水仓,一旦发生突水,首先淹没工作面,直接威胁矿工和设备的安全。始终处于危险状态下开采,每个工作面总是在顶、底板充分扰动情况下回采的突水的可能性最大、最危险。一个工作面一旦发生突水,只好关闭采区,其余区段将无法采出。救灾困难,由于突水位于最低点,欲堵水恢复生产,必须辅以强大的排水系统采区水位降至最低点,并在最危险的状态下,实施堵水。基于以上缺点,经过深入理论分析和开采实践总结,作者提出了“带压分段后退式开采布局法”。首先,根据承压水上采煤理论和实践及矿区水文地质与工程地质条件,做出正确的带压开采分区,即按突水系数和煤层标高划分为安全区、较安全区和危险区等,如图85所示。如东山煤矿?650m水平以上,突水系数小于O4,为安全区I;十550+650m水平,突水系数04O5,为安全区;十450+550m水平,突水系数0.50.6,为较安全区;+450m水平以下,突水系数大于0.6,为危险区IV o根据目前矿井的开采技术和管理水平,+450M水平以上为可采区,+450m水平以下为暂不开采区。然后,根据采区的顶、底板岩性和斌存特征,依据工作面长度与底板承受的水压关系,确定每个区的安全开采工作面长度和首采工作面长度,确保首采工作面安全开采。如东山煤矿底板隔水层厚度平均79m,依据我国带压开采突水的实践,确定第l安全区的工作面长度为120m,推进长度为8001000m,第2安全区工作面长度为如90m推进长度500800M;较安全区的工作面长度为60M,推进长度300500m,在这样的采空面积条件下,可确保首采工作面安全回采(断层构造区除外)。最后,在每个分区内,每个采区的区段实行由下向上的上行后退式回采,也就是说,每个分区的每个采区的首采工作面是在最危险区,但恰在员安全的状态下回采,其原则是:在监测、排水、堵水、管理、未扰动的最安全状态下,用小面快速推进开采本分区最深处的一个工作面,从而解放其他工作面。5 工程实例煤层顶底板采动研究工作的深入,促进了承压水上采煤技术的迅速发展。多种采煤方法的运用,扩大了水上采煤范围,使承压水上采煤成为矿井挖潜增产、减少资源积压和浪费的重要途径。由于多年的开采,焦煤公司朱村矿资源现已枯竭,主采煤层二1煤只剩下些残留煤柱,目前大量开采一5煤已提上日程。一5煤层地质构造比较复杂,断裂较发育,底板岩层含水量较大,水压较高,属于承压水上煤层。为有效防止一5煤突水事故的发生,在主采盘区(54区)采用膏体充填技术处理采空区并结合带压开采综合防治方法,有效地防止了工作面突水。5.1底板突水因素分析5.1.1水源条件根据岩性和地下水的贮存埋藏条件及含水性等特征,朱村矿一5煤层底板自上而下主要有2个含水层。(1)L2灰岩岩溶裂隙含水层。该层厚2281000 m,平均693 m,分布较稳定。其岩溶裂隙发育很不均匀,靠近断层带岩溶裂隙较发育,富水性好;在完整地段发育较差。该层水在遇断层或矿压集中地带多发生底鼓突水,突水量一般为1550m3/min,最大达10 m3/min,该层水富水性强,水源充沛,是一5煤开采时底板突水威胁最大的含水层。(2)O2灰岩溶洞裂隙含水层。该层厚350400 m,为上部煤系地层的基底,其岩溶裂隙非常发育。该含水层以间接方式补给上覆石炭系各层灰岩含水层,对一5煤开采一般不会直接造成威胁,但由于断层错动,使O2灰岩与石炭系L8灰岩、L2灰岩对接或使它们之间的距离变短,也会造成矿井突水或突水量增大,威胁矿井安全生产。5.1.2矿山压力在支承压力1作用下,从煤体边缘到采空区一定距离和一定深度内的底板出现水平拉应力;在压缩区和膨胀区分界处的底板中出现剪应力。拉应力和剪应力使底板出现了一系列垂直于层面的裂隙。垂直裂缝交叉,形成底板破坏带,从而在煤层底板形成了“下三带”,如图5-1所示。当h2=0时,极易使破坏带与含水层或导升带相连通,发生突水事故。5.1.3隔水层对一5煤开采威胁最大的是L2灰含水层,L2顶距一5煤底10252117 m,平均1576 m,隔水层岩性为泥岩、粉砂岩及薄层灰岩(L4、L3),该区隔水层厚度分布情况是:西部厚(20742117 m),东部薄(11561340 m);北部厚,南部薄。O2灰岩上距一5煤底35214945 m,平均4163 m;O2灰岩上距L2底1364206 m,平均1720 m;L2底距O2顶的隔水层岩性为粉砂岩、煤线及铝土。上述隔水层具有一定的阻水能力,但由于岩溶较发育,水文地质较复杂,大大影响了隔水层的阻水性能,使突水危险性加大。图5-1 底板下三带示意图5.1.4补给条件该区南界的三号井断层南升北降,造成该断层南盘的O2灰岩与该区的L8、L5、L2灰岩对接,成为该区L8、L5、L2灰岩的强大补给水源,因此三号井断层为导水断层。断裂构造可以充水导水,使隔水层的实际强度降低,使底板隔水层的有效厚度减小或消失,从而导致突水事故。5.2承压水上采煤方法5.2.1膏体充填开采技术膏体充填开采就是把煤矿附近的煤矸石、粉煤灰、炉渣、劣质土、城市固体垃圾等在地面加工成不需脱水的牙膏状浆体(低成本的特殊“混凝土”),利用充填泵或重力作用通过管道输送到井下、适时充填采空区的采矿方法,对煤矿采空区进行充填,达到支撑上覆岩层、防止地表沉陷的目的。该矿54002工作面采用普采,使用膏体充填技术处理采空区。在工作面的推进过程中,对工作面两巷进行矿压观测和对工作面底板进行注水试验得出了一些工作面顶底板变形和破坏规律。5.2.1.1工作面矿压观测在54002工作面胶带巷和轨道巷分别建立测站2进行观测,以期得出充填体对围岩控制作用的效果和规律,最大限度地控制围岩变形,防止底鼓突水和地表下沉,保证工作面两巷完好。矿压观测结果如图5-2、图5-3所示。图5-2 巷道顶底板移近量图5-3 巷道两帮移近量工作面采用膏体充填法开采,顶板结构在工作面煤壁前方受煤体的支撑,在工作面内受支柱或支架支撑,而在采空区受充填体支撑,形成了“煤壁回采工作面支架(支柱)采空区充填体”的支撑体系。在上述支撑体系的作用下,顶板结构保持完整,基本顶在变形过程中能够较好地受到由“顶板充填体底板围岩”力系的约束,矿压显现明显缓和,围岩移近量很小。(1)工作面前方1020 m处煤层上覆岩层开始运动,但下沉速度很小,为岩层起始沉降期。(2)由进、回风巷测站工作面推过后期测量数据看出,工作面前后1015 m范围内,巷道顶底板移近变化速度增大,下沉量占最终下沉量的80%左右,为岩层主要下沉期。在此区域工作面及两巷支撑压力较大,做好对工作面前后支撑压力范围内的强有效的支护,在控制巷道变形的作用中至关重要。(3)工作面后方20 m以外,上覆岩层沉降速度减缓并基本趋于稳定,下沉量占最终下沉量的15%左右,称为岩层沉降衰减期。(4)由观测数据可知,顶底板最大移近量为95mm,两帮最大移近量为225 mm,矿压显现较缓和,膏体充填效果明显。5.2.1.2底板注水试验为有效防止工作面突水,在54002工作面进风巷进行钻孔注水试验。共施工8个钻孔(图5-4)。图5-4 钻孔布置及局部地质从距工作面50m进行观测,到工作面采过30m结束,得到的观测数据如图5到图7所示。由观测数据分析得出以下结论:(1)在受断层影响被3条断层切割的块状区域内,终孔位置距离断层交界面10 m左右的1#5#钻孔在开采过程中受断层面活化影响较小;其注水量明显变化的2#钻孔是由于其部分测试段位于小煤层,而从其他钻孔的注水量来看,岩层没有因采矿引起整体破坏,推断因矿压造成的直接底破坏深度小于5 m。(2)断层交界面的6#钻孔表明,受采矿、区域水文地质和承压水影响,断层面附近破碎带活化,破碎带渗透性大大增强,L4灰岩与石英砂岩等破碎带富水区域的水能够通过岩层与层的离层和沟通裂隙涌出至直接底板。所以6#钻孔可以看作是受断层影响较为剧烈的典型地点,从而推断在受断层影响较为剧烈区,底板破坏深度大于10 m,参考7#钻孔注水曲线,可以判断破坏深度在1012 m。且断层附近岩层受扰动是在工作面前方10m处,但受采矿影响最为明显的区域是在工作面后20m处,底板突水应多为滞后突水,所以在受大断层影响突水危险性很高的局部区域,注浆钻孔应提前打在工作面-1020 m范围内,这时底板原生裂隙开始扩展沟通,是注浆的最佳地段,以此防止底板滞后突水。(3)断层附近深孔8#孔再次导升破碎带高度在46 m,按照底板“下三带”的理论,一5煤底板有效隔水层为厚47m的石英砂岩,这是按照底板钻孔的底板岩层柱状图资料计算得到的。5.2.2带压开采综合治理方法带压开采综合治理方法是在查清区域地质、矿井水文地质及构造地质情况的基础上进行带压开采。焦作矿区采取“堵、疏、探、排”相结合的带压开采综合治理方案,在防治底板突水方面取得了比较明显的效果。该方法采取水文地质分析及物探手段,正确分析突水水源和富水区,弄清导水通道,然后根据矿井的涌水量和水压选择以疏排为主,还是以堵排为主。朱村矿54区一5煤底板距L2灰10252117 m,平均1576 m,由于局部地区地质条件复杂,水压较大,底板注浆比较困难,采取以疏排为主、帷幕注浆为辅的方法,开采前在断层附近预注浆,并打钻孔排水,以降低水压,确保安全生产。采用这种方法后,54002工作面在开采过程中,基本上未发生过突水事故,达到了安全生产的目的。对场地进行了填洼整平,既不占用农田,又解决了场地扩建问题,保证了施工图设计质量。平顶山市卫东区某煤业有限公司技改设计工业场地防洪与排涝设计中,设计按规范规定矿井井口防洪标准设计重现期为100 a,校核重现期为300 a,工业场地防洪标准设计重现期为100 a。防洪设计高程也按重现期的计算水位(包括壅水和风浪袭击高度)加安全高度进行了计算,并以校核标准检验,按二者的大值确定。但在现场深入细致的调查中发现,该矿井井田的南部为平煤集团铁路专用线,铁路路基比正常地面高10余m,排洪涵洞断面较小, 700 m范围内只有1个, 1998年与该矿井邻近的小煤矿遭遇重现期为50 a的洪水,因山洪暴发,枯树等杂物堵塞排洪涵洞,铁路路基形成拦水坝,洪水回灌,以致井口灌水,形成淹井事故。根据调查了解的情况,对原设计方案进行了优化,通过技术分析和多方案比较,适当加高了防洪设计高程,在井田范围外距涵洞口30m处设置钢筋篦子拦截杂物,并对排洪涵洞进行清挖处理,保证了矿井安全,也避免了多余投资。(3)管路布设。井下通信线路、压风管路、消防洒水管路在安装、施工设计时即按煤炭工业矿井设计规范进行设计,实际施工时也按此要求。2007年7月底发生的河南陕县支建煤矿透水事故中,正是因为有了畅通的通信线路、压风管路的给氧送风、消防洒水管路输送的牛奶面汤和科学施救措施,才挽救了69位矿工的生命。5.3重视对计算成果和过程的合理性分析在对中小煤矿技改工程设计中,对有关的计算成果和计算过程一定要进行定性、定量分析,对使用各种公式的应用条件要进行分析,因为这些计算参数、使用公式应用条件的选择是否恰当,是否符合所应用工程的具体条件,会直接影响到设计成果的合理性。如,矿井提升绞车的选型设计中,提升能力的计算规定较多,且规范用语以“不宜”、“不应”较多,有时提升容器的质量及钢丝绳直径的选择也会影响提升绞车选型计算设计的结果。因此,地方中小煤矿技改工程的设计,除严格执行设计规范和各类煤矿规范规定外,还必须在设计前对每一项计算成果和参数进行合理性分析和检查,必要时应进行重新计算和核定,才能保证施工图设计文件的质量,为工程施工提供正确、安全、合理的数据。5.4不断学习和积累专业知识,提高综合能力专业技术水平和工作能力的提高,离不开持续学习和经验的积累。在中小煤矿技改工程设计和施工中,由于煤矿工程涉及面广,设计人员应熟练掌握煤炭工业设计规范、煤炭工业矿区设计规范、煤炭工业小型矿井设计规范、煤炭工业矿区机电设备修理设施设计规范、煤矿井下消防、洒水设计规范、煤矿安全规程等现行的煤矿规范规程,对即将实施的煤矿规范也应认真学习,如煤矿井底车场硐室设计规范、煤矿斜井井筒及硐室设计规范、煤矿井下热害防治设计规范、煤矿井下供配电设计规范等,还需加强对工程力学、结构力学等专业知识的学习,加强对工业及民用建筑等方面行业规范(如荷载设计规范、结构设计规范规定)的学习。例如,平顶山市郏县某煤业有限公司主井井底车场工程、地面主井绞车房工程都进行了全面的受力计算,才确保工程设计有了可靠的依据,弥补了原施工图设计的缺陷,保证了工程设计、施工的质量。这得益于对专业知识的强化学习和掌握。因此,从事煤矿工程设计和施工的技术人员不但要有扎实的专业知识,而且还要熟悉和掌握有关门类的专业知识和规范。只有这样,才能保证煤矿工程从设计到施工符合实际情况,少出问题,多出优良工程。6 结语我国存在着严重的煤矿底板突水问题,频繁发生的突水事故严重威胁着煤矿的安全生产运。采取合理的预测方法和相应的防治技术措施,才能有效地预防和控制底板突水事故的发生。参考文献:1赵阳生,胡耀青著,承压水上采煤理论与技术,煤炭工业出版社,20042白海彼,陈忠胜,郑步连,葛均刚,奥灰隐伏陷落校特大突水的水源判别及治理。煤炭工程师No6,19983卜昌森矿压作用下地质构造对底板突水的影响山东煤炭科技1996.14I高延法,李白英受奥灰承压水威胁煤层底板变形破坏规律研究J。煤炭学报,2000,255胡耀青,赵阳升,杨栋等。矿区突水监控理论及模型J。煤炭学报,2000,2(3)翻 译 部 分英文原文Study on mining the protective seam with the manless working face in coal and gas outburst minesFang Xin-qiua,b, Zhao Jun-jiea,b, He Jiea,b, aSchool of Mines, China University of Mining & Technology, Xuzhou 221116, China bState Key Laboratory of Coal Resources and Safety Mine, Xuzhou 221008, ChinaAbstract: In order to solve the problems of backward equipments, low recovery, security issues, high mortality in the coal industry, the technology of manless working face in mine which combined the traditional mining process with the automatic technology is proposed based on the scientized mining, meanwhile, the idea of exploiting the protective seam in the coal seam group of the coal and gas outburst mines with manless working face technology is also proposed so as to liberate other high gas coal seams. Then, making the third coal seam in Shaqu coal mine which is a coal and gas outburst mine as the protective seam was being exploited and carried out the designs which included roadway, equipments selection and mining process. Finally, based on the theoretical analysis and numerical simulation, the gas extraction arrangements is designed, which provides the scientific basis and method for industrial experiment of the third coal seam. Key words: scientized mining; coal seam group; protective seam; manless working face; gas extraction1. IntroductionThe scientized mining means mining the coal with the highest efficiency on the precondition of safety and environment friendly 1. Chinas coal output is very big, the advanced mining machines must be used in order to adapt to the construction of modern mine, furthermore, the manless working face should also be used in some difficult conditions such as thin coal seam or coal and gas outburst seam. Although the mining technology develops rapidly, the overall level is still relatively backward. In order to solve this problem, change the present situation and keep the sustainable development of coal resources 2, the author proposes that the protective seam is mined with the manless working face in the coal and gas outburst mines. Then other high-gas coal seams can be liberated and the gas concentration can also be decreased, so there will be a safe condition for mining. Finally, the safe and high efficient green mining will be achieved 3.2. Mining the protective seam in high outburst minesThe coal seam group is one character of the high gas mining area in china and the permeability of coal seam is very low 4. Therefore, gas is the primary factor which prevents this kind of mines from safety and high efficiency.The protective seam mining is widely used in these high outburst mines in China so as to solve this problem. In addition, this is the most scientific method to prevent the regional gas outburst under the condition of mining the coal seam group in high outburst mines 5, 6.When there is a coal seam group in the gas outburst mine, the no-outburst seam or little-outburst seam will be firstly exploited, and this kind of coal seam is called the protective seam. The original equilibrium state of stress will be broken after the protective seam is exploited. Besides, with the development of roof and floor, the strata stress will be redistributed. The roof strata can be divided into caving zone, fractured zone, and bending zone 7, the floor strata will generate floor heave and fractures 8. The fractures contain bedding joint and cross-fracture, the degree of the fracture development of the floor is in inverse proportion to the spacing of layers. The methods of gas extraction can be classified as short distance, medium distance and long distance through the relative spacing of layers which is based on the concrete geological conditions of the coal mines 9, which provides a theoretical guidance to the gas control of coal seamgroup. The practice of mining the protective seam shows that the gas permeability of the upper outburst-relieved seam increases 1000-3000 times, while that of the lower outburst-relieved seam increases about 1000 times. This provides a good chance for gas extraction. So the effect of the increased gas permeability should be fully utilized to extract the gas by arranging kinds of drillings or roadways which not only ensures the safety of mines but also guarantees the extracted green and efficient gas energy for industry. Then the simultaneous extraction of coal and gas can be realized. The concrete methods are as follows:(1) Extracting the gas by ground surface drilling. This method is applied successfully in America 10, besides,Huainan, Huaibei, and Tiefa mining bureaus also made some tests or applications 11. Although they have got some effect, the stability of the drillings are not very well so that they are broken before the expected life for the different geological conditions between China and America and the influence of the movement of the overlying strata.(2) Arranging some drillings and roadways in the coal seam or strata to extract the gas which is the main method widely used in solving the gas outburst problem.3. Analysis of the feasibility and application in manless working face3.1. Analysis of the feasibilityThe modern manless working face is proposed with the principle of scientized mining and comprehensive utilization of coal resources 12. Based on the concrete conditions of China, we analyze the feasibility of manless working face:The gas emission of the thick and medium-thickness coal seam is more thinner than coal seam, so the thin coal seam is the first choice as protective seam. At present, although the mining degree of chanization and automationin thick and medium-thickness coal seam is relatively high, but in thin coal seam is relatively backward. Blasting mining is the main method of mining the thin coal seam, on the one hand, the mining production rate is low and the partial coal resource is lost 13. On the other hand, the working environment is bad and the labor intensity is big.Considering these unfavorable factors, many coal mines give up exploiting the thin coal seams. This action not only wastes the coal resources seriously but also shortens the service life of the mines, meanwhile, it also restricts the development of the protective seam in the coal seam group of the coal and gas outburst mines. So the urgent affair in mining field is to develop the high yield and high efficiency mining technology.Based on the system model of the manless working face, we make some integrated innovations on the modern technology and analyze the needed technology of every subsystem such as self-positioning and automatic navigationtechnology of the shearer, automatic vertical steering technology of the shearer, automatic recognition technology between coal and strata, electro-hydraulic control technology of the hydraulic support, automatic traction technology of the scraper conveyor, two-way communication technology of high-speed in the underground, component based coalmine software as well as the model technology, database technology and multi-sensor technology.After being combined with these technologies, the manless working face technology can greatly improve the mining rate and promote the security.Coal is the main energy resource in China, the healthy development of the coal industry is related to the energy security and economic sustainable development of China. The coal is non-renewable resource and the service life of the mine is certain. If the thin coal seam can be exploited through the existing production system, the recoverable reserves will be increased, and then the economic benefit will also be increased.At present, gas explosion has the highest proportion in all kinds of the coal mine accidents in China. There were 182 coal mine accidents in 2008, the death toll was 778. So the preventing of gas accidents shoulders heavy responsibilities.3.2. ApplicationBased on the scientific mining, exploiting the protective seam with manless working face is proposed combined with these analyses in coal seam group of the coal and gas outburst mines. After the gas in the coal seam group is released, it can be extracted by the reasonable drillings. It is a win-win method, not only will the frequent gas overrun, frequent gas accidents and the limitation of scale be solved, but also the problems of great difficulty in mining and low mining rate. Furthermore, the green mining of coal resources can be realized by simultaneousextraction of coal and gas.4. Example of mining designs in manless working face4.1. Condition of text areaThe Shaqu coal mine of the HUAJIN coking-coal company is a coal and gas outburst mine. The absolute outflow of gas is 344.43 m3/min and the relative outflow of gas is 61.8 m3/t. It is a short distance coal seam group and the minable seams are the second, third, forth and fifth coal seam (Fig.1).Fig. 1. Columnar section of coal and strata seamThe article 193 of coal mine safety regulation prescribes that the protective seam should be exploited preferentially when mining the coal seam group in coal and gas outburst mine. The article 198 prescribes that the gas of liberated seams should be extracted when mining the protective seam 14. So the Shaqu coal mine constitutes the regional gas government which the third coal seam is mined to liberate the second and third coal seam in order to guarantee the safety and efficient mining.4.2. Design of the working faceThe 13301 working face of Shaqu coal mine is chosen as the experimental area where U-type ventilation is designed in line with reducing the amount of roadway as well as decreasing the gas concentration. In order to extract the gas of 13301 working face, the inclined dense drillings are bored in the return airway by the ADR 250 High-Efficiency drilling rig (Fig.2).Fig. 2. Schematic diagram of gas extracting drilling in 13301The aperture of the drilling rig is 250 mm and its very rare home and broad. The big aperture which is beneficial to extract the gas can greatly improve the extraction rate. The length of the working face is 150 m and the length of the drilling is 140 m, arranging the drilling every 6 m in the direction of tendency and all the drillings are parallel.The distance between open-off cut and the first drilling is 15 m and the last one is at the stopping line, so there are altogether 160 drillings. Using the spiral-welded steel pipe as the main pipe which is laid along the floor and UPVC as the branch pipe which is suspended from the roof, the size of the former is DN820mm12mm and the latter is D225mm10mm. The connection model is flange joint.The shape of the roadway is rectangle using the combined support of anchor, metal net and W-type steel band to support the roadway. Both the width of the conveyance roadway and return airway is 4.5 m, the height of the roadway is 2.8 m.4.3. Selection of the equipments in the working faceChoice of shearerFully automatic mining system of the plough is an effective way to realize high production and efficient 15. The features of little depth-web, fast advance speed and high adaptability make it the first choice in mining the thin coal seam. In order to realize the high production, high efficient and high automation, the GH9-34ve/4.7 plough of the DBT Company is selected combined with the concrete conditions in Shaqu coalmine. The rated power of this plough is 160/315 kW and the production capacity is 900 t/h. It can meet the requirement of high production and high efficient.Choice of hydraulic supportFollowing the principle of reliable system and the priority of domestic equipment, we select the Germany PM4 control unit combined with the domestic hydraulic support. The concrete type is ZY4800/6.5/16.5D of the middle hydraulic support and ZZ5800/16/30 of the terminal hydraulic support. Choice of scraper conveyorThe current proportion between the scraper conveyor and shearer is 1.21.4:1. In order to exert the capacity of the scraper conveyor, we select the PF2.30/732 scraper conveyor.The capacity of the fully mechanized mining equipments should be based on the capacity of the shearer.Meanwhile, the principles of the speed-matching, connection-matching, etc. should also be taken into consideration.Then the main equipments of the working face can be determined (Table 1).Table 1. Main equipments of the working faceEquipment nameTypePloughGH9-34ve/4.7scraper conveyorPF2.30/732Middle hydraulic supportZY4800/6.5/16.5DTerminal hydraulic supportZZ5800/16/30Transfer machineSZZ764/132CrusherPEm1000650Belt conveyorSSJ1200/m4.4. Mining technologyBy means of the combined auto-control shearer and hydraulic support, the automatic coal cutting, automaticadvancing support and the linkage of the scraper conveyor can be realized, meanwhile, using the centralized control and sequential start-stop to realize the automatic control (Fig.3).Fig. 3. Technological process4.5. Design of gas extraction4.5.1. Numerical simulationThe numerical simulation software UDEC is adopted to provide the theoretical basis for the gas extraction so that the gas outburst of the first mining seam and the contiguous seams can be governed well. Taking the strike sectionof the 13301 working face as field model, then, the numerical model can be built length of tendency length of inclination=25055 m, the elevation of the third coal seam is 450 m. The left hand, right hand and lower boundaries of the model are displacement boundary. The left and right boundaries constrain the displacement in x-direction and the lower boundary constrains the displacement in y-direction (Fig.4).Fig. 4. Simulation modelThe change law of the mining influence, height of fractured zone in the roof and floor and the change law of fractured zone with the advancing of working face are simulated in this numerical simulation. The results are as follows:When the advance distance is 40 m (Fig.5), basic roof begins to collapse. The height of the caving zone is about 6m and the strata near basic roof are destroyed by tension. The vertical fracture and interlayer fracture are generated in the overlying strata and the height of breaking though fracture is about 10 m. There is some deformation in floor of the goaf, which can be seen from the displacement curve of the floor that the maximum compression deformation is 7 m around the lateral of cutting hole and 7 m around the front of the working face. The maximum floor heave deformation is 5 m around the medial of the cutting hole and 5 m around the rear of the goaf. The maximum deformation is 30 mm. When the advance distance is 60 m (Fig.6), the overlying strata and floor strata are destroyed by the interaction of principal stress and shear stress, moreover, the vertical fracture and interlayer fracture develop constantly. With the advancement of the working face, interlayer fracture is the main fracture above the basic roof of the goaf. The main range of vertical fracture is 5 m away from the roof and floor.Fig. 5. Movement status and fracture distribution of surrounding rock (a) when the excavation distance is 40 m; (b) when the excavation distance is 60 m4.5.2. Design of the gas extraction arrangementIt can be obtained from the theoretical analysis and numerical simulation that the second coal seam is in the fractured zone of the third coal seam and the forth coal seam is in the deformation zone of the third coal seam. So the gas can be largely extracted after arranging some drillings in the fractured zone of the roof and deformation zone of the floor.The DDR1200 directional drilling rig which introduced by the Shaqu coal mine can be controlled artificially to drill along the roof or floor at some angle. The aperture is 170 mm and the drilling length is 1200 m. The 13301 working face is selected as the experimental area and the concrete schemes are:Four drillings were born when they reached the forth coal seam, then, boring in the forth coal seam. These drillings can extract the pressure relief gas of forth coal seam and the gas between the third and the forth coal seam.Four drillings were born when they reached the upside of the second coal seam and the vertical distance between the second coal seam and the drillings is 3 m, then, bore along the direction of parallel to second coal seam.So the second coal seam can be liberated. The profile drawing of the drillings is shown in Fig.7.So the coal seam group can be liberated and the problem of gas outburst can also be well solved.Fig. 7. Schematic diagram of profile in 133015. ConclusionsThe problems of coal mining in China are researched and the manless working face is proposed, which is based on the automatic conditions of fully mechanized mining coal face ,It is an important way to realize the sustainable development of coal industry.The idea of mining the protective seam with the manless working face in the coal seam group of the coal and gas outburst mines is proposed. Not only the problem of hard-mining in coal and gas outburst mines will be solved but also the problem of hard-mining in thin coal seam can be solved.Working face design, equipments selection and mining technology design are carried out to the third coal seam based on the concrete conditions of the Shaqu coal mine.Feasibility of making the third coal seam as protective seam is verified based on the theoretical analysis and numerical simulation and it provides a new thought to the safe and high efficient coal mining.AcknowledgementsFinancial support for this work, provided by the National Natural Science Foundation of China, is gratefully acknowledged.References1 M.G. Qian, On scientized mining. Journal of Mining & Safety Engineering. 25 (2008) 1-10.2 L.S. Shi, Analysis of Chinas energy and development plan of renewable energy. Policy and Management. 117 (2005) 1-4.3 M.G. Qian, X.X. Miu and J.L. Xu, Resources and environment harmonics (green) mining and its technological system. Journal of Mining& Safety Engineering. 23 (2006) 1-4.4 J.P. Ye, B.S. Shi and C.C. Zhang, Coal reservoir permeability and its controlled factor in China. Journal of China Coal Society. 24 (1999)118-122.5 B.F. Yu, Knowledge and practice of mining protective seam. Beijing: China Coal Industry Pressing house, 1986.6 B.F. Yu, Technical manuals for prevention and the use of Coal Mine disaster. Beijing: China Coal Industry Pressing house, 2005.7 M.G. Qian and P.W. Shi, Mining pressure and strata control. Xuzhou:China University of Mining and Technology Press, 2003.8 H.F. Wang, Pressure Relief Functional Principle of Stope Underlying Coal-Rock Mass and Application in Gas Extraction of Outburstrelieved seam Coal Seam. Xuzhou: China University of Mining and Technology, 2008.9 Y.P. Cheng and Q.X. Yu, Application of safe and high-efficient exploitation system of coal and gas in coal seams, Journal of China University of Mining & Technology. 32 (2003) 471-475.10 M.Y. Sun, S.C. Huang and C. Zhu, Present situation of worlds coal-bed methane development and utilization. Chinese Coal. 4 (1996)51-53.11 Y.P. Liang, Practice of Methane drainage by surface well drilling in Huainan mining Area. Journal of Mining & Safety Engineering. 24(2008) 409-413.12 G.B. Liu and D.C. Liu, Research on ways of high production and high efficiency of thin coal seam, Journal of Liaoning Technical University. 21 (2002) 531-533.13 X.Q. Fang, J. He and M.J. Guo, Study on unmanned workface mining technology, Science and Technology Review. 26 (2008) 56-61.14 State Administration of Work Safety, State Administration of Coal Mine Safety. State coal mine safety regulation. Beijing: China Coal Industry Pressing house, 2006.15 C.L. Huang, L.Q. Wang and M.H. Zhou, Coal technology of high production and high efficiency in automatic plough manless working face. Ground Pressure and roof management. S3 (2003) 17-20.中文译文煤与瓦斯突出矿井无人工作面开采保护煤层的研究方新秋,何杰,赵俊杰中国矿业大学矿业工程学院, 煤炭资源与安全开采国家重点实验室,江苏徐州 221008摘要:为解决煤矿开采技术、装备普遍落后,煤炭资源回收率低、安全以及死亡率高的问题,基于科学采矿的理念,提出高度自动化与传统综采工艺相结合的无人工作面开采技术,同时提出了在煤与瓦斯突出煤层组的无人工作面开采保护煤层的概念,以便释放其它高瓦斯煤层。有煤与瓦斯突出的沙曲煤矿正在开采作为保护煤层的3号煤,同时进行巷道、设备选型和开采方法的设计。最后,通过理论分析和数值模拟,设计出瓦斯抽放的方案,对工业试验的3号煤层提供了科学的依据和方法。关键词:科学采矿;煤层组;保护层;无人工作面;瓦斯抽放1 简介科学采矿是指在安全和环保的前提下最高效率的开采技术。中国的煤炭产量很大,先进的采矿设备必须适应现代矿山建设,此外,无人工作面也应用在一些困难的条件下,如薄煤层或煤与瓦斯突出煤层。虽然开采技术发展迅速,但是整体水平还是比较落后的。为了解决这个问题,改善现状及保持煤炭资源的可持续利用,作者提出了在煤与瓦斯突出矿井中无人工作面开采保护煤层。以释放其它被保护煤层的瓦斯,达到减少瓦斯浓度的目的,从而有一个安全的采矿工作环境。最后,达到安全、高效的绿色开采。2 开采高突出矿井保护层煤层组是中国高瓦斯采矿区域的特征之一,同时煤层的渗透率很低。因此,瓦斯是妨碍这类矿井安全和高效开采的主要因素。保护煤层开采已被广泛应用于中国这些高突矿井以解决这个问题。此外,在高突矿井开采煤层组条件下,这是防止区域瓦斯突出的最科学的方法。在有煤与瓦斯突出危险的矿井有一煤层组时,首先开采无突出煤层或基本无突出煤层,这类煤层叫做保护层。 保护层开采后,原岩应力被破坏。此外,随着顶板和底板的变形,应力将会重新分布。顶板被划分成垮落带,裂隙带,弯曲下沉带,底板会隆起和断裂。断裂包括层状节理和交叉裂纹,底板断裂发展的程度与各岩层之间的距离成反比。根据煤矿的具体地质条件,通过层与层之间的相对距离,瓦斯抽放的方法可以分为短距离,中等距离,长距离,它为煤层组瓦斯治理提供了理论依据。实践证明,开采保护层会使上部煤层瓦斯透
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:葛亭煤矿设计【含CAD图纸+文档】
链接地址:https://www.renrendoc.com/p-37123266.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!