威海市开发区给水工程工艺设计【含CAD图纸+文档】
收藏
资源目录
压缩包内文档预览:(预览前20页/共69页)
编号:37128201
类型:共享资源
大小:2.41MB
格式:ZIP
上传时间:2020-01-05
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸+文档
威海市
开发区
给水
工程
工艺
设计
CAD
图纸
文档
- 资源描述:
-
压缩包内含有CAD图纸和说明书,均可直接下载获得文件,所见所得,电脑查看更方便。Q 197216396 或 11970985
- 内容简介:
-
任务书一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。)根据相关设计资料,确定合理的工艺方案,使给水厂出水水质达到生活饮用水卫生标准(GB5749-2006),并安全输配到用户,满足用户的需求。(1)设计水量:满足最高日供水量 13 104m3/d;(2)原水水质:各项指标达到地表水环境质量标准(GB 3838-2002)中的类水质标准;(3)气象水文资料:表1-1 气象、水文、地质资料项目数据项目数据夏季平均气压 (毫巴)997.2最大积雪厚度 (厘米)27年平均气温 ()12.2最大冻土深度 (厘米)69最热月平均最高气温()28.5极端最高气温 ()35.4最冷月平均最低气温()-4.2极端最低气温 ()-1.5最热月平均相对湿度(%)85冰冻厚度 (厘米)32.5平均年总降水量(毫米)775.6地震裂度 (度)七度最多风向及频率 (%)冬NNW 22夏季平均风速 (米/秒)4.9夏 SSE 30年最多风向及频率 (%)SSE 16(4)工程地质资料:土壤承载力满足基建设计要求,地下水水位相对标高 -5.0 m;(5)二泵站输水管起端节点自由水压 62 m。学生在毕业设计过程中熟悉相关的工作方法、工作过程,掌握主体工艺的设计计算和绘图,加强对所学基础知识的应用技能,为日后工作打下坚实基础。二、参考文献1 严煦世、范瑾初主编. 给水工程M. 第4版. 北京:中国建筑工业出版社,19992 中国市政工程东北设计研究院主编. 给水排水设计手册(第1册)常用资料M. 第2版. 北京:中国建筑工业出版社,20003 北京市政工程设计研究总院主编. 给水排水设计手册(第3册)城镇给水M. 第2版. 北京:中国建筑工业出版社,20044 室外给水设计规范(GB500132006). 中国计划出版社,20065 崔玉川等主编给水厂处理设施设计计算M北京:化学工业出版社,20036 高湘主编给水工程技术及工程实例M北京:化学工业出版社,20027 姜乃昌、陈锦章主编水泵及水泵站M第4版北京:中国建筑工业出版社,19988 张智等主编给水排水工程专业毕业设计指南M北京:中国水利水电出版社,19999 市政工程设计施工系列图集给水排水工程(上、下册),中国建筑工业出版社,200310 Dr B C Punmia, Ashok Kr Jain, Arun Kr JainWater Supply EngineeringMLaxmi,199511 American Water Works Association,American Society of Civil EngineersWater Treatment Plant Design (4th edition)McGraw-Hill Professional, 200412 其它参考资料三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。)1设计内容(1)选择、确定处理工艺流程;(2)工艺设计 (含工艺及单体构筑物图的设计)。2设计成果要求(1)设计说明书一份(1.2万字);参考文献10篇;相关外文文献资料翻译 1 份(5000汉字)。(2)绘制的图纸折合零号图纸3张,其中至少包括手绘图2张,其内容应满足表1要求。表1 毕业设计绘制图纸要求图纸内容数量及尺寸要求1水厂总平面和高程布置图1张,1号2絮凝和沉淀池平剖面图2张,1号3滤池平剖面图1张,1号4清水池平剖面图1张,1号5送水泵站平剖面图1张,1号指导教师(签字)20xx年 2 月28 日审题小组组长(签字)Chapter 1The Electrokinetic ConnectionParticle Charge Prevents CoagulationThe key to effective coagulation and floccu-lation is an understanding of how individ-ual colloids interact with each other. Tur-bidity particles range from about .01 to 100microns in size. The larger fraction isrelatively easy to settle or filter. Thesmaller, colloidal fraction, (from .01 to 5microns), presents the real challenge. Theirsettling times are intolerably slow and theyeasily escape filtration.The behavior of colloids in water is stronglyinfluenced by their electrokinetic charge.Each colloidal particle carries a like charge,which in nature is usually negative. Thislike charge causes adjacent particles torepel each other and prevents effectiveagglomeration and flocculation. As aresult, charged colloids tend to remaindiscrete, dispersed, and in suspension.On the other hand, if the charge is signifi-cantly reduced or eliminated, then thecolloids will gather together. First formingsmall groups, then larger aggregates andfinally into visible floc particles which settlerapidly and filter easily.Uncharged Particles are free to collide and agregate.Charged Particles repel each other1Chapter 1The Electrokinetic ConnectionMicroscopic Electrical ForcesThe Double LayerThe double layer model is used to visualizethe ionic environment in the vicinity of acharged colloid and explains how electricalrepulsive forces occur. It is easier to under-stand this model as a sequence of stepsthat would take place around a singlenegative colloid if the ions surrounding itwere suddenly stripped away.We first look at the effect of the colloid onthe positive ions, which are often calledcounter-ions. Initially, attraction from thenegative colloid causes some of the positiveions to form a firmly attached layer aroundthe surface of the colloid. This layer ofcounter-ions is known as the Stern layer.Additional positive ions are still attracted bythe negative colloid but now they are re-pelled by the positive Stern layer as well asby other nearby positive ions that are alsotrying to approach the colloid. A dynamicequilibrium results, forming a diffuse layerof counter-ions. The diffuse positive ionlayer has a high concentration near thecolloid which gradually decreases withdistance until it reaches equilibrium withthe normal counter-ion concentration insolution.In a similar but opposite fashion, there is alack of negative ions in the neighborhood ofthe surface, because they are repelled bythe negative colloid. Negative ions arecalled co-ions because they have the samecharge as the colloid. Their concentrationwill gradually increase as the repulsiveforces of the colloid are screened out by thepositive ions, until equilibrium is againreached with the co-ion concentration insolution.Positive Counter-IonNegative Co-IonTwo Ways to Visualize theDouble LayerThe left view shows thechange in charge densityaround the colloid. Theright shows the distributionof positive and negativeions around the chargedcolloid.Highly NegativeColloidStern LayerDiffuse LayerIons In EquilibriumWith Solution2Double Layer ThicknessThe diffuse layer can be visualized as acharged atmosphere surrounding thecolloid. At any distance from the surface,its charge density is equal to the differencein concentration of positive and negativeions at that point. Charge density is great-est near the colloid and rapidly diminishestowards zero as the concentration of posi-tive and negative ions merge together.The attached counter-ions in the Sternlayer and the charged atmosphere in thediffuse layer are what we refer to as thedouble layer.The thickness of the double layer dependsupon the concentration of ions in solution.A higher level of ions means more positiveions are available to neutralize the colloid.The result is a thinner double layer.Decreasing the ionic concentration (bydilution, for example) reduces the numberof positive ions and a thicker double layerresults.The type of counter-ion will also influencedouble layer thickness. Type refers to thevalence of the positive counter-ion. Forinstance, an equal concentration of alumi-num (Al+3) ions will be much more effectivethan sodium (Na+) ions in neutralizing thecolloidal charge and will result in a thinnerdouble layer.Increasing the concentration of ions or theirvalence are both referred to as double layercompression.Diffuse LayerIon ConcentrationIon ConcentrationLevel of ions in solutionDiffuse LayerDistance From ColloidDistance From ColloidLower Level of Ions in SolutionVariation of Ion Density in the Diffuse LayerIncreasing the level of ions in solution reduces thethickness of the diffuse layer. The shaded arearepresents the net charge density.Higher Level of Ions in Solution3Chapter 1The Electrokinetic ConnectionZeta PotentialThe negative colloid and its positivelycharged atmosphere produce an electricalpotential across the diffuse layer. This ishighest at the surface and drops off pro-gressively with distance, approaching zeroat the outside of the diffuse layer. Thepotential curve is useful because it indi-cates the strength of the repulsive forcebetween colloids and the distance at whichthese forces come into play.A particular point of interest on the curve isthe potential at the junction of the Sternlayer and the diffuse layer. This is knownas the zeta potential. It is an importantfeature because zeta potential can bemeasured in a fairly simple manner, whilethe surface potential cannot. Zeta potentialis an effective tool for coagulation controlbecause changes in zeta potential indicatechanges in the repulsive force betweencolloids.The ratio between zeta potential and sur-face potential depends on double layerthickness. The low dissolved solids levelusually found in water treatment results ina relatively large double layer. In this case,zeta potential is a good approximation ofsurface potential. The situation changeswith brackish or saline waters; the highlevel of ions compresses the double layerand the potential curve. Now the zetapotential is only a fraction of the surfacepotential.Surface PotentialStern LayerZeta PotentialSurface PotentialDiffuse LayerPotentialPotentialStern LayerZeta PotentialDiffuse LayerDistance From ColloidDistance From ColloidFresh WaterZeta Potential vs Surface PotentialThe relationship between Zeta Potential and SurfacePotential depends on the level of ions in solution. Infresh water, the large double layer makes the zetaSaline Waterpotential a good approximation of the surfacepotential. This does not hold true for saline watersdue to double layer compression.4Balancing Opposing ForcesThe DLVO Theory (named after Derjaguin,Landau, Verwery and Overbeek) is theclassic explanation of how particles inter-act. It looks at the balance between twoopposing forces - electrostatic repulsionand van der Waals attraction - to explainwhy some colloids agglomerate and floccu-late while others will not.RepulsionElectrostatic repulsion becomes significantwhen two particles approach each otherand their electrical double layers begin tooverlap. Energy is required to overcomethis repulsion and force the particlestogether. The level of energy requiredincreases dramatically as the particles aredriven closer and closer together. Anelectrostatic repulsion curve is used toindicate the energy that must be overcomeif the particles are to be forced together.The maximum height of the curve is relatedto the surface potential.AttractionVan der Waals attraction between twocolloids is actually the result of forcesbetween individual molecules in eachcolloid. The effect is additive; that is, onemolecule of the first colloid has a van derWaals attraction to each molecule in thesecond colloid. This is repeated for eachmolecule in the first colloid and the totalforce is the sum of all of these. An attrac-tive energy curve is used to indicate thevariation in attractive force with distancebetween particles.Repulsive EnergyElectricalRepulsionDistance Between ColloidsElectrostatic repulsion is always shown as apositive curve.Distance Between ColloidsAttractive EnergyVan der WaalsAttractionVan der Waals attraction is shown as a negativecurve.5Chapter 1The Electrokinetic ConnectionRepulsive EnergyThe Energy BarrierThe DLVO theory combines the van derWaals attraction curve and the electrostaticrepulsion curve to explain the tendency ofcolloids to either remain discrete or toflocculate. The combined curve is calledthe net interaction energy. At each dis-tance, the smaller energy is subtractedfrom the larger to get the net interactionenergy. The net value is then plotted -above if repulsive, below if attractive - andthe curve is formed.The net interaction curve can shift fromattraction to repulsion and back to attrac-tion with increasing distance betweenparticles. If there is a repulsive section,then this region is called the energy barrierand its maximum height indicates howresistant the system is to effective coagula-tion.In order to agglomerate, two particles on acollision course must have sufficient kineticenergy (due to their speed and mass) tojump over this barrier. Once the energybarrier is cleared, the net interaction energyis all attractive. No further repulsive areasare encountered and as a result the par-ticles agglomerate. This attractive region isoften referred to as an energy trap since thecolloids can be considered to be trappedtogether by the van der Waals forces.ElectricalRepulsionNet InteractionEnergyEnergyBarrierDistance Between ColloidsEnergy TrapAttractive Energyvan der WaalsAttractionInteractionThe net interaction curve is formed by subtracting theattraction curve from the repulsion curve.6Lowering the Energy BarrierFor really effective coagulation, the energybarrier should be lowered or completelyremoved so that the net interaction isalways attractive. This can be accom-plished by either compressing the doublelayer or reducing the surface charge.Compress the Double LayerDouble layer compression involves addingsalts to the system. As the ionic concentra-tion increases, the double layer and therepulsion energy curves are compresseduntil there is no longer an energy barrier.Particle agglomeration occurs rapidly underthese conditions because the colloids canjust about fall into the van der Waals “trap”without having to surmount an energybarrier.Flocculation by double layer compression isalso called salting out the colloid. Addingmassive amounts of salt is an impracticaltechnique for water treatment, but theunderlying concept should be understood,and has application toward wastewaterflocculation in brackish waters.Repulsive EnergyElectricalRepulsionNet InteractionEnergyEnergyBarrierDistance Between ColloidsEnergy TrapAttractive Energyvan der WaalsAttractionCompressionDouble layer compression squeezes the repulsiveenergy curve reducing its influence. Further compres-sion would completely eliminate the energy barrier.7Chapter 1The Electrokinetic ConnectionLower the Surface ChargeIn water treatment, we lower the energybarrier by adding coagulants to reduce thesurface charge and, consequently, the zetapotential. Two points are important here.First, for all practical purposes, zeta poten-tial is a direct measure of the surface chargeand we can use zeta potential measure-ments to control charge neutralization.Second, it is not necessary to reduce thecharge to zero. Our goal is to lower theenergy barrier to the point where the par-ticle velocity from mixing allows the colloidsto overwhelm it.The energy barrier concept helps explainwhy larger particles will sometimes floccu-late while smaller ones in the same suspen-sion escape. At identical velocities thelarger particles have a greater mass andtherefore more energy to get them over thebarrier.Repulsive EnergyElectricalRepulsionNet InteractionEnergyEnergyBarrierDistance Between ColloidsEnergy TrapAttractive Energyvan der WaalsAttractionCharge ReductionCoagulant addition lowers the surface charge anddrops the repulsive energy curve. More coagulantcan be added to completely eliminate the energybarrier.8中文译文介绍关于这份指南的介绍_1除了需要更多地考虑和使用消毒,水中悬浮物的去除是水处理的主要目的,事实上,如果要完全可靠的消毒,有效地净化是必要的,因为微生物会被水中的微粒所遮挡。净化通常包括: 混凝 絮凝 沉淀 过滤本指南重点介绍混凝与絮凝:这两个关键步骤往往决定了出厂水的水质。混凝控制技术发展缓慢,许多厂商都应该记得以前的投放剂量的控制,是以观察絮凝池的净化情况的视觉估计为基础的,如果厂商观察发现水质恶化,他的常识性的反应就是增加混凝剂的剂量。这一补救措施是基于这样一个假设,如果加入一定剂量情况转好,那么就需要加入更多的剂量,但是通常情况是越变越糟。各厂商的竞争力取决于他在具体的某项水资源方面多年的经验,通过实验、错误、传言,他终究会遭遇各种各样的问题,并学会处理方法。现当今,可靠的仪器使我们更好地理解并控制净化过程,我们测量浊度、微粒数、电位和流动电流的能力使得混凝和絮凝更具科学性,尽管艺术和经验仍然有其地位。我们生产电位仪,所以在叙述上会有些偏向电位,然而,在这份指南中,我们会尽量将您在处置过程中用到的所有的工具公正的描述,并介绍如何将其用于工作当中。第一章与电动力学的联系_粒子所带电荷阻止混凝有效混凝和絮凝的关键是对各胶体微粒间相互影响的理解,浊水中的微粒大小约为0.01至100微米不等,尺寸较大的微粒比较容易沉淀并过滤,而尺寸较小的(0.01至5微米)那部分胶体微粒,则提出了真正的挑战,它们的沉淀所需时间之长令人难以忍受,而且过滤通常是无效的。水中胶体微粒的状态主要受到自身所带电荷的影响,每个胶体微粒带有相同的电荷,在自然界通常是负电荷,这些相同的电荷导致相邻的微粒相互排斥,阻止有效地凝聚和絮凝,因此,带电胶体倾向于保持独立,分散,悬浮的状态。另一方面,如果微粒所带电荷大大降低甚至消除,那么胶体微粒也会聚集在一起,先形成小的粒子团,接着形成更大的聚集体,之中转化为容易沉淀和过滤的肉眼可见的絮状物。带电粒子互相排斥不带电荷的粒子可以自由碰撞并聚合微观电子力双电层双电层模型用于将带电胶体微粒周围的离子环境可视化,并解释静电排斥力是如何产生的,这样的话,一个带负电的胶体微粒在所带粒子突然被剥夺时发生的一系列变化就很容易理解了。我们首先来看带正离子的胶体的作用,正离子通常也称为反离子,最初,带负电的离子的引力致使一些正离子在胶体表面形成牢固的吸附层,这层反离子层也叫stern层。额外的正离子虽然仍然被带负电的胶体微粒吸引,但同时正离子也受到同样带正电的stern层和其他接近胶体的正离子的排斥,动态平衡的结果是,形成一反离子扩散层,这一正离子的扩散层在胶体附近浓度较高,并趋于向溶液主体扩散直至与溶液中的平均浓度相等。 负离子的分布方式与正离子相似但正好相反,它们受到同样带负电的胶体的排斥而在胶体表面附近浓度很低。负离子也被称作共生离子,因为他们与胶体微粒带有相同的电荷,会由于胶体微粒的排斥而被正离子剔除出去,其浓度逐渐升高并再次与溶液中的负离子浓度达到平衡双电层结构可视化的两种方法左视图显示了胶体微粒周围电荷面密度的变化右边显示了带电胶体微粒周围正、负离子的分布双电层的厚度扩散层可以看作胶体微粒周围的带电离子云,距表面的任一距离的点上,其电荷密度等于正离子和负离子在这一点上的浓度差异,在胶体微粒附近电荷密度最大,并且随着正、负离子的浓度相等迅速减弱为零。胶体表面的反离子吸附层即stern层与扩散层加起来就是我们所说的双电层结构。双电层的厚度取决于溶液中离子的浓度,溶液中离子浓度高则意味着拥有更多的正离子来中和胶体微粒所带负电荷,其结果就是双电层较薄,如果降低离子浓度(例如用稀释的方法)就可以减少正离子的数量以获得较厚的双电层。反离子的类型也会影响双电层的厚度,类型指的是反离子的价态,例如,一定浓度的铝离子(Al+3)溶液就比相同浓度的钠离子(Na+)能更有效地中和胶体所带电荷,并能减小双电层的厚度。提高溶液浓度或提高离子的价态均可压缩双电层厚度。不同离子密度下的扩散层提高溶液中的离子水平可降低扩散层厚度阴影区域代表净电荷密度电位带负电的胶体微粒与带正电的离子云在扩散层中产生电势,其在胶体表面最高,随着与表面的距离加大而减小,最终在扩散层外降为零,这条电势曲线非常有用,因为它表明了胶体微粒间的排斥力强度
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。