



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.2 二元一次方程组的解法代入法(一)【学习目标】 1使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元次方程组为一元一次方程。 2使学生了解“代人消元法”,并掌握直接代入消元法。 3通过代入消元,使学生初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。【学习重点】用代入法把二元一次方程组转化为一元一次方程。【学习难点】用代入法求出一个未知数值后,把它代入哪个方程求另一个未知数值较简便。【探究学习】一、创设情境1.复习提问: 什么叫做二元一次方程、二元一次方程组、二元一次方程组的解?2.回顾上节课中的问题2:设应拆除旧校舍 , 建造新校舍, 那么根据题意可列出方程组: (*)问 怎样求出这个二元一次方程组的解?二、探索归纳我们知道此题可以用一元一次方程来求解, 即设应拆除旧校舍, 则建造新校舍, 根据题意可得到 (*). 对于一元一次方程的解法我们是非常熟悉的. 那么我们如果能将解二元一次方程组转化为解一元一次方程, 我们的问题不就可以解决了吗? 可是如何来转化呢?引导学生观察方程组(*)和相应的一元一次方程(*)间的联系.在方程组(*)中的方程, 把它代入方程中的位置, 我们就可以得到一元一次方程.通过“代入”, 我们消去了未知数,得到了一元一次方程, 这样就可以求解了.解方程(*)得:, 把代入,得. 所以.答 应拆除旧校舍 , 建造新校舍.能否用同样的方法来求解问题1中的二元一次方程组.【典型例题】例1: 解方程组: 与方程组(*)不同, 这里的两个方程中, 没有一个是直接用一个未知数表示另一个未知数的形式, 这时怎么办呢?由学生观察后得出结论: 可以将方程变形成为用来表示的形式, 即, 然后再将它代入方程, 就能消去, 得到一个关于的一元一次方程.解: 由得 . 将代入, 得 . 即. 将代入, 得 . 所以.(可以在依据二元一次方程组的定义来验证得出的解是否正确.)由上面的例题可看出, 我们是通过“代入”消去一个未知数, 方程转化为一元一次方程来解的. 这种解法叫做代入消元法, 简称代入法. 解方程组的基本思想方法就是“消元”. 例2: 把下列方程写成用含的代数式表示的形式:(1) ; (2)分析 即将方程作适当的变形, 把含有y的项放在方程的一边, 其他的项移到方程另一边, 再把y的系数化1.解:(1) ; (2).【学习小结】1.解二元一次方程组的问题可以转化为解一元一次方程的问题, 其基本的思想方法是消元. 通过使用“代入法”可实现消元.2.代入法解二元一次方程组的一般步骤为: 如果方程组中有一个方程恰好是一个未知数表示另一个未知数的形式, 就可以直接把它代入另一个方程. 如果没有, 则需将其中一个方程作适当的变形后, 化为一个未知数表示另一个未知数的形式, 再把它代入另一个方程. 这样得到一个一元一次方程. 解这个一元一次方程, 求出一个未知数的值;将求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东莞光伏工程方案(3篇)
- 北京市大兴区2025年中考生物学试卷附真题答案
- 辽阳教师招聘面试题库及答案
- 农业产业链2025年农产品质量安全追溯体系建设策略分析报告
- 安全教育培训通稿课件
- 矿山会计面试题及答案
- 安全教育培训资料课件
- 客服压力面试题库及答案
- 2025年农产品质量安全追溯体系在农产品质量安全监管中的溯源技术人才培养报告
- 2025年新能源行业协同创新新能源产业技术创新平台建设报告
- 2024年四川遂宁川能水务有限公司招聘笔试参考题库含答案解析
- 射频同轴电缆组件市场需求分析报告
- 第1课 社会主义在中国的确立与探索【中职专用】高一思想政治《中国特色社会主义》(高教版2023基础模块)
- 社区工作-徐永祥-高教出版社-全要点课件
- 传统建筑元素在现代建筑中应用
- 王道勇保障和改善民生
- 医疗法律法规知识培训
- 血友病课件完整版
- 临床职业素养
- 种子学-种子的化学成分课件
- 手术室无菌技术 课件
评论
0/150
提交评论