已阅读5页,还剩52页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER6THELAPLACETRANSFORM6 0INTRODUCTION WithLaplacetransform weexpandtheapplicationinwhichFourieranalysiscanbeused TheLaplacetransformprovidesuswitharepresentationforsignalsaslinearcombinationsofcomplexexponentialsoftheformwiths j TheLaplacetransform 拉普拉斯变换 isageneralizationofthecontinuous timeFouriertransform 6 1THELAPLACETRANSFORM Lets j andusingX s todenotethisintegral weobtain ForsomesignalswhichhavenotFouriertransforms ifwepreprocessthembymultiplyingwitharealexponentialsignal thentheymayhaveFouriertransforms TheLaplacetransformisanextensionoftheFouriertransform theFouriertransformisaspecialcaseoftheLaplacetransformwhen 0 Example6 1Considerthesignal Forconvergence werequirethatRe s 0 orRe s Thus Example6 2Considerthesignal Forconvergence werequirethatRe s 0 orRe s Thus ROCforExample6 1 ROCforExample6 2 Example6 3Considerthesignal UsingEuler srelation wecanwrite Thus Consequently SomeusefulLTpairs MarkingthelocationsoftherootsofN s andD s inthes plane s平面 andindicatingtheROCprovidesaconvenientpictorialwayofdescribingtheLaplacetransform Generally theLaplacetransformisrational i e itisaratioofpolynomialsinthecomplexvariables TherootsofN s arereferredtoasthezeros 零点 ofX s andtherootsofD s arereferredtoasthepoles 极点 ofX s TherepresentationofX s throughitspolesandzerosinthes planeisreferredtoasthepole zeroplot 极零图 ofX s Exceptforascalefactor acompletespecificationofarationalLaplacetransformconsistsofthepole zeroplotofthetransform togetherwithitsROC Abouttheinfinity 无穷远点 ingeneral iftheorderofthedenominatorexceedstheorderofthenumeratorbyk X s willhavekzerosatinfinity Similarly iftheorderofthenumeratorexceedstheorderofthedenominatorbyk X s willhavekpolesatinfinity Example6 4Considerthesignal Pole zeroplotandROC 6 2THEREGIONOFCONVERGENCEFORLAPLACETRANSFORM Property1 TheROCofX s consistsofstripesparalleltothej axisinthes plane Property2 ForrationalLaplacetransforms theROCdoesnotcontainanypoles Property3 Ifx t isoffinitedurationandisabsolutelyintegrable thentheROCistheentires plane Example6 5Let Thepoleats isremovable Property4 Ifx t isrightsided andifthelineRe s 0isintheROC thenallvaluesofsforwhichRe s 0willalsobeintheROC andtheROCofaright sidedsignalisaright halfplane Property5 Ifx t isleftsided andifthelineRe s 0isintheROC thenallvaluesofsforwhichRe s 0willalsobeintheROC andtheROCofaleft sidedsignalisaleft halfplane Property6 Ifx t istwosided andifthelineRe s 0isintheROC thentheROCwillconsistofastripinthes planethatincludesthelineRe s 0 Property7 IftheLaplacetransformX s ofx t isrational thenitsROCisboundedbypolesorextendstoinfinity Inaddition nopolesofX s arecontainedintheROC Property8 IftheLaplacetransformX s ofx t isrational thenifx t isrightsided theROCistheregioninthes planetotherightoftherightmostpole Ifx t isleftsided theROCistheregioninthes planetotheleftoftheleftmostpole Example6 6Let 6 3THEINVERSELAPLACETRANSFORM Multiplyingbothsidesby weobtain Changingthevariableofthisintegrationfrom tosandusingthefactthat isconstant sothatds jd Thus thebasicinverseLaplacetransformequationis TheinverseLaplacetransformequationstatesthatx t canberepresentedasaweightedintegralofcomplexexponentials TheformalevaluationoftheintegralforageneralX s requirestheuseofcontourintegration 围线积分 inthecomplexplane Fortheclassofrationaltransforms theinverseLaplacetransformcanbedeterminedbyusingthetechniqueofpartial fractionexpansion Example6 7Let Performingthepartial fractionexpansion weobtain Example6 8Let Computethex t withcontourintegrationmethod X s hastwofirst orderpoles andasecond orderpole FromtheResidueTheorem 6 4GEOMETRICEVALUATIONOFTHEFOURIERTRANSFORMFROMTHEPOLE ZEROPLOT AgeneralrationalLaplacetransformhastheform Complexplanerepresentationofthevectorss1 a ands1 arepresentingthecomplexnumberss1 aands1 arespectively Let stakeanexampletoshowhowtoevaluatetheFouriertransformfromthepole zeroplot Given Geometrically fromFigure wecanwrite X j isthereciprocaloftheproductofthelengthsofthetwopolevectors 极点矢量 argX j isthenegativeofthesumoftheanglesofthetwovectors zerovectors 零点矢量 6 5PROPERTIESOFTHELAPLACETRANSFORM 6 5 1Linearity 6 5 2TimeShifting then Note ROCisatleasttheintersectionofR1andR2 whichcouldbeempty alsocanbelargerthantheintersection If then 6 5 3Shiftinginthes Domain If then 6 5 4TimeScaling If then Consequence ifx t isrealandifX s hasapoleorzeroats s0 thenX s alsohasapoleorzeroatthecomplexconjugatepoints s0 6 5 5Conjugation Whenx t isreal Consequence 6 5 6ConvolutionProperty then 6 5 7DifferentiationintheTimeDomain If then 6 5 8Differentiationinthes Domain 6 5 9IntegrationintheTimeDomain 6 5 10TheInitial andFinal ValueTheorems 初值和终值定理 Initial valuetheorem Final valuetheorem Example6 9Considerthesignal Weknow Andfromthetimeshiftingproperty Sothat Example6 10DeterminetheLaplacetransformof Since Fromthedifferentiationinthes domainproperty Infact byrepeatedapplicationofthisproperty weobtain Example6 11Usetheinitial valuetheoremtodeterminetheinitial valueof 6 6ANALYSISANDCHARACTERIZATIONOFLTISYSTEMSUSINGTHELAPLACETRANSFORM TheLaplacetransformsoftheinputandtheoutputofanLTIsystemarerelatedthroughmultiplicationbytheLaplacetransformoftheimpulseresponseofthesystem Y s H s X s TheROCassociatedwiththesystemfunctionforacausalsystemisaright halfplane AnROCtotherightoftherightmostpoledoesnotguaranteethatasystemiscausal Forasystemwitharationalsystemfunction causalityofthesystemisequivalenttotheROCbeingtheright halfplanetotherightoftherightmostpole Example6 12Considerasystemwithimpulseresponse Sinceh t 0fort 0 thissystemiscausal Thesystemfunction ItisrationalandtheROCistotherightoftherightmostpole consistentwithourstatement Example6 13Considerthesystemfunction Forthissystem theROCistotherightoftherightmostpole Sincethesystemfunctionisirrational AcausalsystemwithrationalsystemfunctionH s isstableifandonlyifallofthepolesofH s lieintheleft halfofthes plane i e allofthepoleshavenegativerealparts AnLTIsystemisstableifandonlyiftheROCofitssystemfunctionH s includesthej axis i e Re s 0 ROCofh t sLTcontainsj axis ForanLTIsystemwhichisdescribedbyalinearconstant coefficientdifferentialequationoftheform Itssystemfunction transferfunction is Thus thesystemfunctionforasystemspecifiedbyadifferentialequationisalwaysrational Example6 14GiventhefollowinginformationaboutanLTIsystem 1 Thesystemiscausal 2 Thesystemfunctionisrationalandhasonlytwopoles ats 2ands 4 3 Ifx t 1 theny t 0 4 Thevalueoftheimpulseresponseatis4 Determinethesystemfunctionofthesystem Fromfact2 wewrite Fromfact3 p s musthavearootats 0andthusisoftheformp s sq s Fromfact4and1 Thehighestpowersinsinboththedenominatorandthenumeratorareidentical thatis q s mustbeaconstant Weletq s k It seasytofindthatk 4 Sothat 6 7SYSTEMFUNCTIONALGEBRAANDBLOCKDIAGRAMREPRESENTATIONS TheuseoftheLaplacetransformallowsustoreplacetime domainoperationssuchasdifferentiation convolution timeshifting andsoon withalgebraicoperations InthissectionwetakealookatanotherimportantuseofsystemfunctionalgebrainanalyzinginterconnectionsofLTIsystemsandsynthesizingsystemsasinterconnectionsofelementarysystembuildingblocks Example6 15ConsiderthecausalLTIsystemwithsystemfunction Thissystemcanalsobedescribedbythedifferentialequation 1 sisthesystemfunctionofasystemwithimpulseresponseu t i e itisthesystemfunctionofanintegrator Example6 16ConsideracausalLTIsystemwithsystemfunction Herez t istheoutputofthefirstsubsystem y t istheoutputoftheoverallsystem Example6 17Considerasecond orderLTIsystemwithsystemfunction Direct form 直接型 representationforthesysteminExample6 17 Cascade form 串联型 representationforthesysteminExample6 17 y t x t Parallel form 并联型 representationforthesysteminExample6 17 6 8SignalFlowGraphRepresentation 信号流图 Formally asignalflowgraphisanetworkofdirectedbranchesthatconnectatnodes Associatedwitheachnodeisavariableornodevalue Input output nodevalue direction branch j k Twospecialtypesofnodes Sourcenodes 源结点 nodesthathavenoenteringbranches whichareusedtorepresenttheinjectionofexternalinputsorsignalsourcesintoagraph Sinknodes 汇结点 nodesthathaveonlyenteringbranches whichareusedtoextractoutputsfromagraph Loop 环 self loop 自环 forwardpath 前向通路 mixednode 混合结点 Example6 18Consideragainthesysteminexample6 17 Usesignalflowgraphtorepresentit Mason sFormula 梅森规则 Hereisthegraphdeterminant 特征行列式 Inasignalflowgraph thetransfervalue transferfunction betweenanysourcenodeandsinknodeormixednodecanbedeterminedbythefollowingequation isthegainofeachloop isthemultiplicationofthegainsoftwoloopswhichhavenosharednodesandbranches isthegraphdeterminantoftheleftgraphafterremovingthek thforwardparth isthegainofthek thforwardparthbetweenthesourcenodeandthesinknode Example6 19ComputethetransferfunctionsbetweennodesAandB andnodesAandCinthefollowingsignalflowgraph AtoB AfterremovingG1 theleftgraphis Thus AtoC AfterremovingG1 theleftgraphis Thus 6 9THEUNILATERALLAPLACETRANSFORM bilateralLaplacetransform 双边拉普拉斯变换 unilateralLaplacetransform 单边拉普拉斯变换 Thelowerlimitofintegration signifiesthatweincludeintheintervalofintegrationanyimpulsesorhigherordersingularityfunctionsconcentratedatt 0 奇异函数 Thebilateraltransformdependsontheentiresignalfromt tot whereastheunilateraltransformdependsonlyonthesignalfromto Thebilateraltransformandtheunilateraltransformofacausalsignalareidentical TheROCfortheunilateraltransformisalwaysaright halfplane Example6 20Considerthesignal ThebilateraltransformX s forthisexamplecanbeobtainedfromExample6 1andthetime shiftingproperty Bycontrast theunilateraltransformis TheevaluationoftheinverseunilateralLaplacetransformsisalsothesameasforbilateraltransforms withtheconstraintthattheROCforaunilateraltransformmustalwaysbearight halfplane Infact wecouldrecognizeasthebilateraltransformofx t u t Since and Thus Fortheunilateraltransform theROCmustbetheright halfplanetotherightoftherightmostpoleof Inthiscase theROCconsistsofallpointsswithRe s 1 Thus unilateralLaplacetransformprovideuswithinformationaboutsignalsonlyfor Example6 22ConsidertheunilateralLaplacetransform Takinginversetransformsofeachtermresultsin 6 9 1PropertiesoftheUnilateralLaplaceTransform Timescaling Convolution assumingthatx1 t andx2 t areidenticallyzerofort 0 Differentiationinthetimedomain Proofofthispropertyforfirst derivativeofx t Similarly theunilateralLaplacetransformofsecond derivativeofx t canbeobtainedbyrepeatingusingtheproperty 6 9 2SolvingDifferentialEquationsUsingtheUnilateralLaplaceTransform Applyingtheunilateraltransformtobothsidesofthedifferentialequation weobtain orequivalently Thus weobtain TheunilateralLaplacetransformisofconsiderablevalueinanalyzingcausalsystemswhicharespecifiedbylinearconstant coefficientdifferentialequationswithnonzeroinitialconditions i e systemsthatarenotinitiallyatrest 6 9 3RepresentationofCircuitsins domain ApplyunilateralLaplacetransformtoeachequationtoobtain Foracircuit ifweobtaintherepresentationforthebasicelementsinthecircuitinthes domain thenwealsoobtainthecircuitinthes domain Aninductorwithinduct
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公司财务年终总结报告篇
- DB3303∕T055-2022 降香黄檀造林及幼林抚育技术规程(温州市)
- 2025年农产品线上销售合同协议
- 2025年农产品加工合作协议协议
- 金融新品全方位推广
- 赋能未来:20XX年度回顾
- 函数理论与应用
- 2025年农艺师试题及答案详解
- 安全风险辨识分级及管控制度
- 2025年传染病防治知识和技能培训试题及答案
- 2025年甘肃省甘南州第三批高层次和急需紧缺专业技术人才引进52人笔试考试参考试题及答案解析
- 2025年税务师考试《税法一》冲刺试卷(含答案)
- 湖南机场2026届校园招聘78人考前自测高频考点模拟试题浓缩300题附答案
- 大学生职业生涯规划书课件
- 《大学英语》 课程标准
- 资产处置培训课件
- 医疗健康体检服务投标书标准范本
- 企业培训课程评估及反馈工具
- 风电齿轮箱课件
- 预应力桩施工质量验收标准
- 2025年福建省辅警(协警)招聘考试题库及答案
评论
0/150
提交评论