




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用代入消元法解二元一次方程教案(第2课时)一、教学目标1、 知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为已知”的化归思想。2、 过程与方法运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。3、 情感、态度、价值观在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。二、教学重、难点1、 教学重点会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为已知”的化归思想。2、 教学难点“消元”的思想;“化未知为已知”的化归思想。三、教学设计1、 复习,引入新课上次课我们学习了二元一次方程组的解法,今天我们继续学习。请同学们先解这道题,(让同学上黑板,然后老师展示过程)解: 由,得+把代入,得(+)解得,y=4把y=代入,得x=+()原方程组的解是把 代入可以吗?试试看把y=-4代入或可以吗?其中式是用含y的代数式表示x而象“y = 3x + 1”也称为用含x的代数式表示y新课讲解:1你能把下列方程写成用含x的式子表示y的形式吗?2.已知二元一次方程 4x+5y=4用含的式子表示为_.用含的式子表示为_.例题展示解: 由,得2y =53x把代入,得 把代入,得解得,x=1把x=1代入,得原方程组的解是代入法的一般步骤变形 代入 求解 回代 结论练习:解方程组解:略四、课结小堂1.基本思路:消元 二元一次方程组 消 元代入法 一元一次方程2.代入法的一般步骤:即: 变形代入求解回代结论五、布置作业课本习题7.2的1、2题。思考还有其他求解二元一次方程组的方法没有?若果有,怎样解?六、板书设计2.1 解二元一次方程组一、复习引入 例题: 三、总结. .二新课讲解 作业:. 练习: . .七、教学反思进行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程退费合同
- 期末考试卷七下数学试卷
- 秦淮区初二数学试卷
- 期末考七下数学试卷
- 晋城市中医院患者隐私保护考核
- 2025第二人民医院无菌操作技术考核
- 2025儿童医院疾病编码员资格认证
- 运城市中医院病理诊断报告书写考核
- 重庆市中医院医德医风与患者沟通技巧情景案例分析题
- 灵活用工合同
- 压力容器定期检验规则(3次修订后完整全文)
- 第8课 欧美主要国家的资产阶级革命与资本主义制度的确立(新教材课件)-【中职专用】《世界历史》(高教版2023•基础模块)
- 医院陪护服务质量标准和保证措施
- 招标代理服务服务方案
- 外周血细胞形态学考试试题及答案
- 幼儿园每月食品安全调度会议纪要
- 人力资源管理与开发公开课
- 食堂诺如病毒预防培训
- 人教版(2019)高中生物必修2《遗传与进化》教材课后练习题答案
- 燃料运输部推煤机和装载机检修维护费用及范围
- 第12课《身体“红绿灯”》课件
评论
0/150
提交评论