卧式螺旋卸料沉降离心机设计【6张CAD图纸、说明书】【GC系列】
收藏
资源目录
压缩包内文档预览:
编号:37721045
类型:共享资源
大小:1.48MB
格式:ZIP
上传时间:2020-01-07
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
50
积分
- 关 键 词:
-
6张CAD图纸、说明书
GC系列
卧式
螺旋
卸料
沉降
离心机
设计
CAD
图纸
说明书
GC
系列
- 资源描述:
-
【温馨提示】====【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======【3】特价促销,,拼团购买,,均有不同程度的打折优惠,,详情可咨询QQ:1304139763 或者 414951605======【4】 题目最后的备注【GC系列】为店主整理分类的代号,与课题内容无关,请忽视
- 内容简介:
-
arXiv:cond-mat/0302324v1 cond-mat.stat-mech 17 Feb 2003Parrondos games as a discrete ratchetRa ul Toral1, Pau Amengual1and and Sergio Mangioni21Instituto Mediterr aneo de Estudios Avanzados, IMEDEA (CSIC-UIB),ed.Mateu Orfila, Campus UIB, E-07122 Palma de Mallorca, Spain2Departament de F sica, Facultad de Ciencias Exactas y Naturales,Universidad Nacional de Mar del Plata, De an Funes 3350, 7600 Mar del Plata, ArgentinaWe write the master equation describing the Parrondos games as a consistent discretizationof the FokkerPlanck equation for an overdamped Brownian particle describing a ratchet.Ourexpressions, besides giving further insight on the relation between ratchets and Parrondos games,allow us to precisely relate the games probabilities and the ratchet potential such that periodicpotentials correspond to fair games and winning games produce a tilted potential.PACS numbers: 05.10.Gg, 05.40.Jc, 02.50.LeThe Parrondos paradox1, 2 shows that the alternation of two losing games can lead to a winning game. Thissurprising result is nothing but the translation into the framework of very simple gambling games of the ratcheteffect3. In particular, the flashing ratchet4, 5 can sustain a particle flux by alternating two relaxational potentialdynamics, none of which produces any net flux. Despite that this qualitative relation between the Parrondo paradoxand the flashing ratchet has been recognized from the very beginning (and, in fact, it constituted the source ofinspiration for deriving the paradoxical games), only very recently there has been some interest in deriving exactrelations between both6, 7.In this paper, we rewrite the master equation describing the evolution of the probabilities of the different outcomesof the games in a way that shows clearly its relation with the FokkerPlanck equation for the flashing ratchet. In thisway, we are able to give an expression for the dynamical potentials in terms of the probabilities defining the games,as well as an expression for the current. Similarly, given a ratchet potential we are able to construct the games thatcorrespond to that potential.The Parrondos paradox considers a player that tosses different coins such that a unit of “capital” is won (lost)if heads (tails) show up. Although several possibilities have been proposed8, 9, 10, 11, 12, 13, 14 , in this paperwe consider the original and easiest version in which the probability of winning, pi, depends on the actual value ofthe capital, i, modulus a given number L. A game is then completely specified by giving the set or probabilitiesp0,p1,.,pL1 from which any other value pkcan be derived as pk= pk modL. A fair game, one in which gainsand losses average out, is obtained ifQL1i=0pi=QL1i=0(1 pi).The paradox shows that the alternation (eitherrandom or periodic) of two fair games can yield a winning game. For instance, the alternation of game A defined bypi p = 1/2, i, and game B defined by L = 3 and p0= 1/10,p1= p2= 3/4 produces a winning game althoughboth A and B are fair games.A discrete time can be introduced by considering that every coin toss increases by one. If we denote by Pi()the probability that at time the capital is equal to i, we can write the general master equationPi( + 1) = ai1Pi1() + ai0Pi() + ai1Pi+1()(1)where ai1is the probability of winning when the capital is i 1, ai1is the probability of losing when the capitalis i + 1, and, for completeness, we have introduced ai0as the probability that the capital i remains unchanged (apossibility not considered in the original Parrondo games). Note that, in accordance with the rules described before,we have taken that the probabilities ai1,ai0,ai1 do not depend on time. It is clear that they satisfy:ai+11+ ai0+ ai11= 1(2)which ensures the conservation of probability:PiPi( + 1) =PiPi().It is a matter of straightforward algebra to write the master equation in the form of a continuity equation:Pi( + 1) Pi() = Ji+1(t) Ji(t)(3)where the current Ji() is given by:Ji() =12FiPi() + Fi1Pi1() DiPi() Di1Pi1()(4)andFi= ai+11 ai11,Di=12(ai+11+ ai11)(5)2This form is a consistent discretization of the FokkerPlank equation15 for a probability P(x,t)P(x,t)t= J(x,t)x(6)with a currentJ(x,t) = F(x)P(x,t) D(x)P(x,t)x(7)with general drift, F(x), and diffusion, D(x). If t and x are, respectively, the time and space discretization steps,such that x = ix and t = t, it is clear the identificationFitxF(ix),Dit(x)2D(ix)(8)The discrete and continuum probabilities are related by Pi() P(ix,t)x and the continuum limit canbe taken by considering that M =limt0,x0(x)2tis a finite number. In this case Fi M1xF(ix) andDi M1D(ix).From now on, we consider the case ai0= 0. Since pi= ai+11we haveDi D = 1/2Fi= 1 + 2pi(9)and the current Ji() = (1 pi)Pi() + pi1Pi1() is nothing but the probability flux from i 1 to i.The stationary solutions Pstican be found solving the recurrence relation derived from (4) for a constant currentJi= J with the boundary condition Psti= Psti+L:Psti= NeVi/D1 2JNiXj=1eVj/D1 Fj(10)with a currentJ = NeVL/D 12PLj=1eVj/D1Fj(11)N is the normalization constant obtained fromPL1i=0Psti= 1. In these expressions we have introduced the potentialViin terms of the probabilities of the games16Vi= DiXj=1ln?1 + Fj11 Fj?= DiXj=1ln?pj11 pj?(12)The case of zero current J = 0, implies a periodic potential VL= V0= 0. This reproduces again the conditionQL1i=0pi=QL1i=0(1 pi) for a fair game. In this case, the stationary solution can be written as the exponentialof the potential Psti= NeVi/D.Note that Eq.(12) reduces in the limit x 0 to V (x) = M1RF(x)dxor F(x) = MV (x)x, which is the usual relation between the drift F(x) and the potential V (x) with a mobilitycoefficient M.The inverse problem of obtaining the game probabilities in terms of the potential requires solving Eq. (12) withthe boundary condition F0= FL17:Fi= (1)ieVi/DPLj=1(1)jeVj/D eVj1/D(1)Le(V0VL)/D 1+iXj=1(1)jeVj/D eVj1/D(13)These results allow us to obtain the stochastic potential Vi(and hence the current J) for a given set of probabilitiesp0,.,pL1, using (12); as well as the inverse: obtain the probabilities of the games given a stochastic potential,using (13). Note that the game resulting from the alternation, with probability , of a game A with pi= 1/2, i and3-1.5-1-0.500.511.5-20 -15 -10-505101520V(x)x-1.5-1-0.500.511.5-20 -15 -10-505101520V(x)xFIG. 1:Left panel: potential Viobtained from (12) for the fair game B defined by p0= 1/10, p1= p2= 3/4. Right panel:potential for game B, with p0= 3/10, p1= p2= 5/8 resulting from the random alternation of game B with a game A withconstant probabilities pi= p = 1/2, i.a game B defined by the set p0,.,pL1 has a set of probabilities p0,.,pL1 with pi= (1)12+pi. For theFis variables, this relation yields:Fi= Fi,(14)and the related potential Vfollows from (12).We give now two examples of the application of the above formalism. In the first one we compute the stochasticpotentials of the fair game B and the winning game B, the random combination with probability = 1/2 of game Band a game A with constant probabilities, in the original version of the paradox1. The resulting potentials are shownin figure 1. Notice how the potential of the combined game clearly displays the asymmetry under space translationthat gives rise to the winning game.-1.5-1-0.500.511.5-40 -30 -20 -10010203040V(x)x-1.5-1-0.500.511.5-40 -30 -20 -10010203040V(x)xFIG. 2:Left panel: Ratchet potential (15) in the case L = 9, A = 1.3. The dots are the discrete values Vi= V (i) used inthe definition of game B. Right panel: discrete values for the potential Vifor the combined game Bobtained by alternatingwith probability = 1/2 games A and B. The line is a fit to the empirical form V(x) = x + V (x) with = 0.009525, = 0.4718.The second application considers as input the potentialV (x) = A?sin?2xL?+14sin?4xL?(15)which has been widely used as a prototype for ratchets3. Using (13) we obtain a set of probabilities p0,.,pL1by discretizing this potential with x = 1, i.e. setting Vi= V (i). Since the potential V (x) is periodic, the resulting4game B defined by these probabilities is a fair one and the current J is zero. Game A, as always is defined bypi= p = 1/2, i. We plot in figure 2 the potentials for game B and for the game B, the random combination withprobability = 1/2 of games A and B. Note again that the potential Viis tilted as corresponding to a winning gameB. As shown in figure 3, the current J depends on the probability for the alternation of games A and B.05e-061e-051.5e-052e-0500.20.40.60.81JFIG. 3:Current J resulting from equation (11) for the game Bas a function of the probability of alternation of games Aand B. Game B is defined as the discretization of the ratchet potential (15) in the case A = 0.4, L = 9. The maximum gaincorresponds to = 0.57.In summary, we have written the master equation describing the Parrondos games as a consistent discretization ofthe FokkerPlanck equation for an overdamped Brownian particle. In this way we can relate the probabilities of thegames p0,.,pL1 to the dynamical potential V (x). Our approach yields a periodic potential for a fair game anda tilted potential for a winning game. The resulting expressions, in the limit x 0 could be used to obtain theeffective potential for a flashing ratchet as well as its current.The work is supported by MCyT (Spain) and FEDER, projects BFM2001-0341-C02-01, BMF2000-1108. P.A. issupported by a grant from the Govern Balear.1 G.P. Harmer and D. Abbott, Nature 402, 864 (1999).2 G.P. Harmer and D. Abbott, Fluctuations and Noise Letters 2, R71 (2002).3 P. Reimann, Phys. Rep. 361, 57 (2002).4 R.D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994).5 J. Prost, J.F. Chauwin, L. Peliti and A. Ajdari, Phys. Rev. Lett. 72, 2652 (1994).6 A. Allison and D. Abbott, The Physical Basis for Parrondos Games, p
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。