实验三离散时间信号的频域分析第一部分.doc_第1页
实验三离散时间信号的频域分析第一部分.doc_第2页
实验三离散时间信号的频域分析第一部分.doc_第3页
实验三离散时间信号的频域分析第一部分.doc_第4页
实验三离散时间信号的频域分析第一部分.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Name: Yifan Chen 20112121006Section:Laboratory Exercise 3DISCRETE-TIME SIGNALS: FREQUENCY-DOMAIN REPRESENTATIONS3.1DISCRETE-TIME FOURIER TRANSFORMProject 3.1 DTFT ComputationA copy of Program P3_1 is given below:% Program P3_1% Evaluation of the DTFT clf;% Compute the frequency samples of the DTFTw = -4*pi:8*pi/511:4*pi;num = 2 1;den = 1 -0.6;h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h);gridtitle(Real part of H(ejomega)xlabel(omega /pi);ylabel(Amplitude);subplot(2,1,2)plot(w/pi,imag(h);gridtitle(Imaginary part of H(ejomega)xlabel(omega /pi);ylabel(Amplitude);pausesubplot(2,1,1)plot(w/pi,abs(h);gridtitle(Magnitude Spectrum |H(ejomega)|)xlabel(omega /pi);ylabel(Amplitude);subplot(2,1,2)plot(w/pi,angle(h);gridtitle(Phase Spectrum argH(ejomega)xlabel(omega /pi);Answers:Q3.1 The expression of the DTFT being evaluated in Program P3_1 is - The function of the pause command is - causes M-files to stop and wait for you to press any key before continuing.Q3.2 The plots generated by running Program P3_1 are shown below:The DTFT is a period function of w.Its period is - 2 piThe types of symmetries exhibited by the four plots are as follows: Real part of H(ejomega) is eve symmetries;Imaginary part of H(ejomega) is ode symmetries;Magnitude Spectrum |H(ejomega)| is eve symmetries;Phase Spectrum argH(ejomega) is ode symmetries;Q3.3 The required modifications to Program P3_1 to evaluate the given DTFT of Q3.3 are given below:% Program Q3_3% Evaluation of the DTFTclf;% Compute the frequency samples of the DTFTw = 0:pi/511:pi;num = 0.7 -0.5 0.3 1;den = 1 0.3 -0.5 0.7;h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h);gridtitle(Real part of H(ejomega)xlabel(omega /pi);ylabel(Amplitude);subplot(2,1,2)plot(w/pi,imag(h);gridtitle(Imaginary part of H(ejomega)xlabel(omega /pi);ylabel(Amplitude);pausesubplot(2,1,1)plot(w/pi,abs(h);gridtitle(Magnitude Spectrum |H(ejomega)|)xlabel(omega /pi);ylabel(Amplitude);subplot(2,1,2)plot(w/pi,angle(h);gridtitle(Phase Spectrum argH(ejomega)xlabel(omega /pi);ylabel(Phase, radians);The plots generated by running the modified Program P3_1 are shown below: The DTFT is a perio function of w. Its period is 2piThe jump in the phase spectrum is caused by - the real parts saltus step,the phase saltus set up.The phase spectrum evaluated with the jump removed by the command unwrap is as given below:% Program Q3_3% Evaluation of the DTFTclf;% Compute the frequency samples of the DTFTw = 0:pi/511:pi;num = 0.7 -0.5 0.3 1;den = 1 0.3 -0.5 0.7;h = freqz(num, den, w);subplot(2,1,1)plot(w/pi,abs(h);gridtitle(Magnitude Spectrum |H(ejomega)|)xlabel(omega /pi);ylabel(Amplitude);subplot(2,1,2)p = angle(h(:); plot(w/pi,unwrap(p);gridtitle(Phase Spectrum argH(ejomega)xlabel(omega /pi);ylabel(Phase, radians);Q3.5The required modifications to Program P3_1 to plot the phase in degrees are indicated below:clfw=-4*pi:8*pi/511:4*pi;num=2 1;den=1 -0.6;h=freqz(num,den,w);subplot(2,1,1)plot(w,real(h);grid;title(H(ejangle的实部)xlabel(angle);ylabel(振幅);subplot(2,1,2)plot(w/pi,imag(h);gridtitle(H(ejangle的虚部)xlabel(angle/);ylabel(振幅);figure(2);subplot(2,1,1)plot(w,abs(h);gridtitle(|H(ejangle)|幅度谱)xlabel(angle/);ylabel(振幅);subplot(2,1,2)plot(w,angle(h);gridtitle(相位谱argH(ejangle)xlabel(angle);ylabel(以角度为单位的相位);ct 3.2 DTFT PropertiesAnswers:Q3.6 The modified Program P3_2 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below:% Program P3_2% Time-Shifting Properties of DTFTclf;w = -pi:2*pi/255:pi; wo = 0.4*pi;D=10;num=1 2 3 4 5 6 7 8 9;h1 = freqz(num, 1, w);h2 = freqz(zeros(1,D) num, 1, w);subplot(2,2,1)plot(w/pi,abs(h1);gridtitle(Magnitude Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,2)plot(w/pi,abs(h2);gridtitle(Magnitude Spectrum of Time-Shifted Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,3)plot(w/pi,angle(h1);gridtitle(Phase Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Phase, radians);subplot(2,2,4)plot(w/pi,angle(h2);gridtitle(Phase Spectrum of Time-Shifted Sequence)xlabel(omega /pi);ylabel(Phase, radians);The parameter controlling the amount of time-shift is - D=10,zeros(1,D) numQ3.7The plots generated by running the modified program are given below: figure(s) here. Copy from figure window(s) and paste. From these plots we make the following observations:In the limited length of vector, in the original sequence for discrete time Fourier transform, amplitude and phase is changed. From the continuous time, continuous frequency, is a continuous time, discrete frequency.Q3.10 The modified Program P3_3 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below:% Program P3_3% Time-Shifting Properties of DTFTclf;w = -pi:2*pi/255:pi; wo = 0.4*pi;num1=1 3 5 7 9 11 13 15 17;L = length(num1);h1 = freqz(num1, 1, w);n = 0:L-1;num2 = exp(wo*i*n).*num1;h2 = freqz(num2, 1, w);subplot(2,2,1)plot(w/pi,abs(h1);gridtitle(Magnitude Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,2)plot(w/pi,abs(h2);gridtitle(Magnitude Spectrum of Time-Shifted Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,3)plot(w/pi,angle(h1);gridtitle(Phase Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Phase, radians);subplot(2,2,4)plot(w/pi,angle(h2);gridtitle(Phase Spectrum of Time-Shifted Sequence)xlabel(omega /pi);ylabel(Phase, radians);The parameter controlling the amount of frequency-shift is -woQ3.12Program P3_3 was run for the following value of the frequency-shift -The plots generated by running the modified program are given below:clf;w = -pi:2*pi/255:pi; wo = 3*pi;num1=1 3 5 7 9 11 13 15 17;L = length(num1);h1 = freqz(num1, 1, w);n = 0:L-1;num2 = exp(wo*i*n).*num1;h2 = freqz(num2, 1, w);subplot(2,2,1)plot(w/pi,abs(h1);gridtitle(Magnitude Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,2)plot(w/pi,abs(h2);gridtitle(Magnitude Spectrum of Time-Shifted Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,3)plot(w/pi,angle(h1);gridtitle(Phase Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Phase, radians);subplot(2,2,4)plot(w/pi,angle(h2);gridtitle(Phase Spectrum of Time-Shifted Sequence)xlabel(omega /pi);ylabel(Phase, radians);From these plots we make the following observations:Select different values of frequency shift, can get different results.Q3.14 The modified Program P3_4 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: % Program P3_4% Convolution Property of DTFTclf;w = -pi:2*pi/255:pi;x1=1 3 5 7 9 11 13 15 17;x2=1 -2 3 -2 1;y = conv(x1,x2);h1 = freqz(x1, 1, w);h2 = freqz(x2, 1, w);hp = h1.*h2;h3 = freqz(y,1,w);subplot(2,2,1)plot(w/pi,abs(hp);gridtitle(Product of Magnitude Spectra)xlabel(omega /pi);ylabel(Product of Amplitude);subplot(2,2,2)plot(w/pi,abs(h3);gridtitle(Magnitude Spectrum of Convolved Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,3)plot(w/pi,angle(hp);gridtitle(Sum of Phase Spectra)xlabel(omega /pi);ylabel(Phase, radians);subplot(2,2,4)plot(w/pi,angle(h3);gridtitle(Phase Spectrum of Convolved Sequence)xlabel(omega /pi);ylabel(Phase, radians);Q3.17 The modified Program P3_5 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: % Program P3_5% Modulation Property of DTFTclf;w = -pi:2*pi/255:pi;x1=1 3 5 7 9 11 13 15 17;x2=1 -1 1 -1 1 -1 1 -1 1;y=x1.*x2;h1 = freqz(x1, 1, w);h2 = freqz(x2, 1, w);h3 = freqz(y,1,w);subplot(3,1,1)plot(w/pi,abs(h1);gridtitle(Magnitude Spectrum of First Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(3,1,2)plot(w/pi,abs(h2);gridtitle(Magnitude Spectrum of Second Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(3,1,3)plot(w/pi,abs(h3);gridtitle(Magnitude Spectrum of Product Sequence)xlabel(omega /pi);ylabel(Amplitude);Q3.20 The modified Program P3_6 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below:% Program P3_6% Time-Reversal Property of DTFTclf;w = -pi:2*pi/255:pi;num=1 2 3 4;L = length(num)-1;h1 = freqz(num, 1, w);h2 = freqz(fliplr(num), 1, w);h3 = exp(w*L*i).*h2;subplot(2,2,1)plot(w/pi,abs(h1);gridtitle(Magnitude Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,2)plot(w/pi,abs(h3);gridtitle(Magnitude Spectrum of Time-Reversed Sequence)xlabel(omega /pi);ylabel(Amplitude);subplot(2,2,3)plot(w/pi,angle(h1);gridtitle(Phase Spectrum of Original Sequence)xlabel(omega /pi);ylabel(Phase, radians);subplot(2,2,4)plot(w/pi,angle(h3);gridtitle(Phase Spectrum of Time-Reversed Sequence)xlabel(omega /pi);ylabel(Phase, radians); The program implements the time-reversal operation as follows - From these plots we make the following observations: First of all, using the reverse function will row vector of molecular coefficient inversion, that is, from the original 1, 2, 3, 4 gone bad now 4 3 2 1, and then after the coefficient inversion sequence multiplied by the exp

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论