


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.2 二次函数的性质一、教学目标1、知识与技能: (1) 结合二次函数图象,研究二次函数所具有的性质,从解析式到定义域、值域、单调性,对称性等不同的角度认识二次函数,熟知性质. (2) 通过二次函数的图象和函数的单调性,会求二次函数在某一区间上的最值或值域.2、 过程与方法: (1)能够借助二次函数的图象,研究二次函数的性质,体会数形结合研究函数的重要性. (2)仔细体会函数的定义域对研究函数性质的影响.3、情感.态度与价值观:通过学习二次函数的性质体会研究具体函数性质的方法和必要性与重要性,增强研究学习函数性质的积极性和自信心。二、重难点: 重点:二次函数的性质.难点:二次函数在区间上的值域三、教学方法:观察、思考、探究.四、教学过程(一)、新课导入在初中,我们已经学习了二次函数,知道其图象为抛物线,并了解其图像的开口方向、对称轴、顶点等特征,本节课将进一步研究一般的二次函数的性质。(二)、新知探究1二次函数性质包括图像的开口方向、顶点坐标、对称轴、单调区间、最大值、最小值.请画出函数的图像并回答出其性质。对于二次函数配方为_.当时,它的图像开口向_,顶点坐标为_,对称轴为_;在_上是减少的,在_上是增加的,当_时,取得最_-值。当时,它的图像开口向_,顶点坐标为_,对称轴为_;在_上是减少的,在_上是增加的,当_时,取得最_值。2请说出二次函数和的性质.3.感悟归纳: 二次函数y=ax2+bx+c(a0)的图象和性质(1).顶点坐标与对称轴;(2).位置与开口方向;(3).增减性与最值当a 0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a 0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值 4.探索二次函数与一元二次方程 w 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1).每个图象与x轴有几个交点?(2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: 有两个交点,有一个交点,没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与 x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac0时,抛物线与x轴没有交点。举例: 求二次函数图象y=x2-3x+2与x轴的交点a、b的坐标。结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是a( x1,0),b(x2,0)(三)、例题探析例1、已知函数y= x2 -2x -3 , ()写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形 的面积:(3)求出它的单调区间、最大值或最小值。yxo例2、你能利用函数单调性的定义证明函数的单调性吗?试试看,请写出证明过程。分析:设,任取,且,利用单调性的定义可证。由函数单调性的定义,在_上是减少的,同理可证在_上是增加的。练习:1、请同学们证明当时, 函数的单调性。2、对于二次函数来说,你可以通过哪些量说出函数的性质?,画出函数的图像?(三).巩固练习: 请完成课本练习:p42. 1,2(四).尝试提高:1、二次函数y=ax2+bx+c(a0)的图象如图所示,x-110y则a、b、c的符号为_.2、已知二次函数的图像如图所示,下列结论:a+b+c0 a-b+c0 abc 0 b=2a其中正确的结论的个数是( )a 1个 b 2个 c 3个 d 4个3、若函数在上是单调函数,则的取值范围是( ) a b c d4、若函数,的值域( )a b c d(五).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度洛阳市考古研究院引进急需短缺专业人才4名考前自测高频考点模拟试题及一套参考答案详解
- 2025河南开封国禹运营管理有限公司招聘园区转运中心人员10人考前自测高频考点模拟试题带答案详解
- 合同范本之叉车司机劳动合同5篇
- 2025北京市规划和自然资源委员会事业单位招聘工作人员55人模拟试卷及完整答案详解1套
- 2025金沙酱酒酒业投资集团有限公司考前自测高频考点模拟试题及完整答案详解
- 2025广西仙城投资发展集团有限公司第一次招聘人员模拟试卷及答案详解(历年真题)
- 2025年甘肃省兰州大学物理科学与技术学院诚聘英才模拟试卷附答案详解(模拟题)
- 2025年洛阳博物馆人才引进高层次人才2名考前自测高频考点模拟试题及答案详解(各地真题)
- 2025黑龙江齐齐哈尔市富裕县富海镇招聘公益性岗位人员2人模拟试卷附答案详解
- 2025江西吉安市吉州区樟山镇中心幼儿园招聘1人模拟试卷及答案详解(典优)
- 2025年西藏公开遴选公务员笔试试题及答案(A类)
- 工业园区储能项目商业计划书
- 抗炎药物作用机制研究-洞察及研究
- (2025年标准)吊篮移交协议书
- 急性重症胰腺炎个案护理
- 企业内部控制培训课件
- 装卸设备安全管理制度
- 做有温度的护理人
- 贵州文物调查研究-从文物看中华民族共同体历史的区域实践知到智慧树章节测试课后答案2024年秋贵州民族大学
- 2024−2025学年高二上学期第一次月考数学试题含答案
- 土地承包土地合作农作物种植投标文件技术方案(技术方案)
评论
0/150
提交评论