(江苏版)2018年高考数学一轮复习 专题8.3 直线、平面平行的判定及其性质(讲).doc_第1页
(江苏版)2018年高考数学一轮复习 专题8.3 直线、平面平行的判定及其性质(讲).doc_第2页
(江苏版)2018年高考数学一轮复习 专题8.3 直线、平面平行的判定及其性质(讲).doc_第3页
(江苏版)2018年高考数学一轮复习 专题8.3 直线、平面平行的判定及其性质(讲).doc_第4页
(江苏版)2018年高考数学一轮复习 专题8.3 直线、平面平行的判定及其性质(讲).doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题8.3 直线、平面平行的判定及其性质【考纲解读】内 容要 求备注aab bcc点、线、面之间的位置关系直线与平面平行的判定及性质1以立体几何的定义、公理、定理为出发点,认识和理解空间中线面平行的有关性质和判定定理2能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题【直击考点】题组一 常识题1已知直线a平面,p,那么过点p且平行于直线a的直线有_条【解析】由线面平行的性质即得1条2如图所示,在正方体中,a,b为正方体的两个顶点,m,n,p分别为其所在棱的中点,则直线ab与平面pnm的位置关系是_【解析】在正方体中,ab是正方体的体对角线,m,n,p分别为其所在棱的中点,取mn的中点f,连接pf,则易知pfab,故由线面平行的判定定理可知直线ab与平面pnm平行3如图所示,在长方体abcd a1b1c1d1中,平面ab1c与平面a1dc1的位置关系是_【解析】易证a1c1,a1d都与平面ab1c平行,且a1da1c1a1,所以平面ab1c平面a1dc1.题组二常错题4设m,l表示直线,表示平面,若m,则l是lm的_条件5下列条件中能判断两个平面平行的是_(填序号)一个平面内的一条直线平行于另一个平面;一个平面内的两条直线平行于另一个平面;一个平面内有无数条直线平行于另一个平面;一个平面内的任何一条直线都平行于另一个平面【解析】由平面与平面平行的判断定理可知,一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行故只有条件符合6已知,是三个平面,a,b是两条直线,有下列三个条件:a,b;a,b;b,a.如果命题“若a,b,且_,则ab”为真命题,那么可以在横线处填入的条件是_(把所有正确条件的序号都填上)【解析】中,a,a,bab(线面平行的性质定理)中,b,b,aab(线面平行的性质定理)题组三常考题7如图所示,在长方体abcd a1b1c1d1中,点e,f分别在a1b1,d1c1上,a1ed1f.过点e,f的平面与此长方体的面abcd相交于hg,则ef与hg的位置关系为_【解析】易知平面abcd平面a1b1c1d1,又平面平面a1b1c1d1ef,平面平面abcdhg,所以根据面面平行的性质定理有efhg.8 如图所示,在直三棱柱abc a1b1c1中,设ab1的中点为d,b1cbc1e,则de与平面aa1c1c的位置关系为_9在如图所示的正方体中,平面beg与平面ach的位置关系为_【解析】因为abcd efgh为正方体,所以bcfg,bcfg,又fgeh,fgeh,所以bceh,bceh,于是四边形bche为平行四边形,所以bech.又ch平面ach,be平面ach,所以be平面ach.同理bg平面ach.又bebgb, 所以平面beg平面ach.【知识清单】考点1 直线与平面平行的判定与性质直线与平面平行的判定与性质判定性质定义定理图形条件aa,b,abaa,a,b结论abaab考点2 平面与平面平行的判定与性质面面平行的判定与性质判定性质定义定理图形条件a,b,abp,a,b,a,b,a结论aba考点3线面、面面平行的综合应用1平面与平面的位置关系有相交、平行两种情况2直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:a,b,且aba;(3)其他判定方法:;aa.3直线和平面平行的性质定理:a,a,lal.4两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a,b,abm,a,b;(3)推论:abm,a,b,abm,a,b,aa,bb.5两个平面平行的性质定理(1),aa;(2),a,bab.6与垂直相关的平行的判定(1)a,bab;(2)a,a.【考点深度剖析】近年来,高考题由考查知识向考查能力方向转变,题目新颖多变,灵活性强立体几何试题一般都是综合直线和平面,以及简单几何体的内容于一体,经常是以简单几何体作为载体,全面考查线面关系【重点难点突破】考点1 直线与平面平行的判定与性质【1-1】【2014年盐城模拟】若m,n为两条不重合的直线,为两个不重合的平面,则下列命题中正确的是_a若m,n都平行于平面,则m,n一定不是相交直线b若m,n都垂直于平面,则m,n一定是平行直线c已知,互相平行,m,n互相平行,若m,则nd若m,n在平面内的射影互相平行,则m,n互相平行【答案】【解析】a中,m,n可为相交直线;b正确;c中,n可以平行,也可以在内;d中,m,n也可能异面【1-2】在四面体abcd中,m、n分别是面acd、bcd的重心,则四面体的四个面中与mn平行的是_【答案】平面abc、平面abd【1-3】如图所示,在正四棱柱abcda1b1c1d1中,e、f、g、h分别是棱cc1、c1d1、d1d、dc的中点,n是bc的中点,点m在四边形efgh及其内部运动,则m满足条件_时,有mn平面b1bdd1.【答案】m在线段hf上【思想方法】判断或证明线面平行的常用方法:利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a,b,aba),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;) 利用面面平行的性质定理(,aa);利用面面平行的性质(,a,aa)【温馨提醒】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线考点2 平面与平面平行的判定与性质【2-1】设是空间两条直线,是空间两个平面,则下列选项中不正确的是_a当时,“”是“”成立的充要条件 b当时,“”是“”的充分不必要条件c当时,“”是“”的必要不充分条件d当时,“”是“”的充分不必要条件【答案】c【解析】在选项c中,当时,直线的位置关系可能平行,可能异面. 若,则或者,是的既不充分也不必要条件,故选c.【2-2】下列命题中正确的个数是_若直线a不在内,则a;若直线l上有无数个点不在平面内,则l;若直线l与平面平行,则l与内的任意一条直线都平行;若l与平面平行,则l与内任何一条直线都没有公共点;平行于同一平面的两直线可以相交【答案】2【2-3】在正方体abcda1b1c1d1中,m,n,p分别为棱dd1,cd,ad的中点求证:平面mnp平面a1c1b.【证明】如图,连接d1c,ad1,则mn为dd1c的中位线,mnd1c.又d1ca1b,mna1b.同理,mpc1b.而mn与mp相交,mn,mp在平面mnp内,a1b,c1b在平面a1c1b内平面mnp平面a1c1b.【思想方法】证明两个平面平行的方法有: 用定义,此类题目常用反证法来完成证明; 用判定定理或推论(即“线线平行面面平行”),通过线面平行来完成证明; 根据“垂直于同一条直线的两个平面平行”这一性质进行证明; 借助“传递性”来完成 面面平行问题常转化为线面平行,而线面平行又可转化为线线平行,需要注意转化思想的应用【温馨提醒】证明面面平行的常用方法:(1)面面平行的判定定理,(2)两个平面垂直于同一条直线,则这两个平面平行,(3)两个平面同时与第三个平面平行,则这两个平面平行考点3线面、面面平行的综合应用【3-1】设表示直线表示不同的平面,则下列命题中正确的是_a若且,则 b若且,则c若且,则 d若且,则【答案】d【3-2】如图,abcda1b1c1d1为正方体,下面结论中正确的是_bd平面cb1d1;ac1平面cb1d1;ac1与底面abcd所成角的正切值是;cb1与bd为异面直线【答案】【解析】易知正确,ac1与底面abcd所成角的正切值是,故错;由异面直线的判定可知是正确的【3-3】已知平面,p且p,过点p的直线m与,分别交于a.c,过点p的直线n与,分别交于b,d,且pa6,ac9,pd8则bd的长为_【答案】或24.【思想方法】解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在【温馨提醒解决本类问题时,需要熟练掌握线面平行的判定及性质,面面平行的判定及性质,以及它们之间的相互转化 解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论