(浙江专版)2018年高考数学 第1部分 重点强化专题 专题3 概率及期望与方差 专题限时集训6 古典概型.doc_第1页
(浙江专版)2018年高考数学 第1部分 重点强化专题 专题3 概率及期望与方差 专题限时集训6 古典概型.doc_第2页
(浙江专版)2018年高考数学 第1部分 重点强化专题 专题3 概率及期望与方差 专题限时集训6 古典概型.doc_第3页
(浙江专版)2018年高考数学 第1部分 重点强化专题 专题3 概率及期望与方差 专题限时集训6 古典概型.doc_第4页
(浙江专版)2018年高考数学 第1部分 重点强化专题 专题3 概率及期望与方差 专题限时集训6 古典概型.doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题限时集训(六)古典概型(对应学生用书第125页) 建议a、b组各用时:45分钟a组高考达标一、选择题1小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是m,i,n中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()a.b.c.d.c(m,1),(m,2),(m,3),(m,4),(m,5),(i,1),(i,2),(i,3),(i,4),(i,5),(n,1),(n,2),(n,3),(n,4),(n,5),事件总数有15种正确的开机密码只有1种,p.2(2017浙江五校联考)在某次全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手若从中任选2人,则选出的火炬手的编号相连的概率为() 【导学号:68334082】a.b.c.d.d由题意得从5人中选出2人,有10种不同的选法,其中满足2人编号相连的有(1,2),(2,3),(3,4),(4,5),共4种不同的选法,所以所求概率为,故选d.3在一次旅行途中,组织者要开展一个游戏节目,需要从5对夫妇中选出4位表演节目,请问选出的4位中不含有夫妇的概率为()a.b.c.d.d从5对夫妇即10个人中选4个人,共有c种情况,其中选出的4个人中不含有夫妇的情况有c24种,因此所求概率为.4某中学有3个社团,每位同学参加各个社团的可能性相同,甲、乙两位同学均参加其中一个社团,则这两位同学参加不同社团的概率为()a.b.c.d.c甲、乙两位同学参加3个社团,共有9种不同的情况,其中两人参加相同的社团的情况有3种,所以两人参加不同的社团的概率为1,故选c.5现有甲、乙、丙、丁四名义工到三个不同的社区参加公益活动若每个社区至少分一名义工,则甲、乙两人被分到不同社区的概率为()a.b. c.d.b依题意得,甲、乙、丙、丁到三个不同的社区参加公益活动,每个社区至少分一名义工的方法数是ca,其中甲、乙两人被分到同一社区的方法数是ca,因此甲、乙两人被分到不同社区的概率等于1.二、填空题6抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件a表示“朝上一面的数是奇数”,事件b表示“朝上一面的数不超过2”,则p(ab)_.将事件ab分为:事件c“朝上一面的数为1,2”与事件d“朝上一面的数为3,5”,则c,d互斥,且p(c),p(d),p(ab)p(cd)p(c)p(d).7(2016杭州学军中学模拟)已知函数f(x)2x24ax2b2,若a,b3,5,7,则该函数有两个零点的概率为_. 【导学号:68334083】要使函数f(x)2x24ax2b2有两个零点,即方程x22axb20要有两个实根,则4a24b20.又a4,6,8,b3,5,7,即ab,而a,b的取法共有339种,其中满足ab的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为.8在一个袋子中装有标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同,现从中随机取出一个小球,记下数字后放回袋中,这样连续进行3次,则以记下的三个数字为边,不能组成三角形的概率为_连续取3次,共有44464种不同结果,其中不能组成三角形的数字组合有(1,1,2),(1,1,3),(1,1,4),(2,2,4),(1,2,3),(1,2,4),(1,3,4),有4c3a30种,故所求概率为.三、解答题9袋子里放有编了号的6个小球,其中红球3个,白球2个,黄球1个,并且这些球除颜色和编号外完全相同(1)现从袋子里任意摸出3球,求其中恰有2球同色的概率;(2)若在袋子里任意摸球,取后放回,每次只摸出一球,共摸3次,求摸出的3球中至少有2球同色的概率解(1)从袋子里任意摸出3个球有c20种方法,3分从袋子里任意摸出3球恰有2球同色有cccc13种方法.5分所以概率为p.6分(2)从袋子中有放回地任意摸球3次,有种方法,摸出的3球都不同色,有ccc种方法.11分所以概率为p1a.15分10(2017温州质量检测)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于6或5则中二等奖,等于4则中三等奖,其余结果为不中奖(1)求中二等奖的概率;(2)求不中奖的概率. 【导学号:68334084】解(1)记“中二等奖”为事件a.从五个小球中一次任意摸出两个小球,不同的结果有0,1,0,2,0,3,0,4,1,2,1,3,1,4,2,3,2,4,3,4,共10个基本事件记两个小球的编号之和为x,由题意可知,事件a包括两个互斥事件:x5,x6.3分事件x5的取法有2种,即1,4,2,3,故p(x5);事件x6的取法有1种,即2,4,故p(x6).5分所以p(a)p(x5)p(x6).7分(2)记“不中奖”为事件b,则“中奖”为事件,由题意可知,事件包括三个互斥事件:中一等奖(x7),中二等奖(事件a),中三等奖(x4)事件x7的取法有1种,即3,4,故p(x7);9分事件x4的取法有0,4,1,3,共2种,故p(x4).由(1)可知,p(a).11分所以p()p(x7)p(x4)p(a).13分所以不中奖的概率为p(b)1p()1.15分b组名校冲刺一、选择题1从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()a.b. c.d.a基本事件的总数为10,其中能构成三角形三边长的数组为(2,3,4),(2,4,5),(3,4,5),故其概率为.2下列试验中,是古典概型的个数为()向上抛一枚质地不均匀的硬币,观察正面向上的概率;向正方形abcd内,任意抛掷一点p,点p恰与点c重合;从1,2,3,4四个数中,任取两个数,求所取两数之和是2的概率;在线段0,5上任取一点,求此点小于2的概率. 【导学号:68334085】a0b1c2d3b中,硬币质地不均匀,不是等可能事件,所以不是古典概型的基本事件都不是有限个,不是古典概型符合古典概型的特点,是古典概型问题3掷一个骰子的试验,事件a表示“小于5的偶数点出现”,事件b表示“小于5的点数出现”,则一次试验中,事件a发生的概率为()a.b.c.d.c掷一个骰子的试验有6种可能结果依题意p(a),p(b),p()1p(b)1.表示“出现5点或6点”的事件,因此事件a与互斥,从而p(a)p(a)p().4已知函数f(x)ax3bx2x,连续抛掷两颗骰子得到的点数分别是a,b,则函数f(x)在x1处取得最值的概率是()a.b.c.d.c由题意得f(x)ax2bx1,因为f(x)在x1处取得最值,所以1,符合的点数(a,b)有(1,2),(2,4),(3,6),共3种情况又因为抛掷两颗骰子得到的点数(a,b)共有36种情况,所以所求概率为,故选c.二、填空题5曲线c的方程为1,其中m,n是将一枚骰子先后投掷两次所得点数,事件a为“方程1表示焦点在x轴上的椭圆”,那么p(a)_.试验中所含基本事件个数为36.若表示焦点在x轴上的椭圆,则mn,有(2,1),(3,1),(6,5),共1234515种情况,因此p(a).6(2017绍兴调研)电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字构成,则一天中任一时刻显示的四个数字之和为23的概率为_. 【导学号:68334086】因为时钟一分钟显示一次,故总的显示方法数为24601 440(种),四个数字之和为23的有09:59,18:59,19:49,19:58四种情况,故所求概率为.三、解答题7现有8名数理化成绩优秀者,其中a1,a2,a3数学成绩优秀,b1,b2,b3物理成绩优秀,c1,c2化学成绩优秀,从中选出数学、物量、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛(1)求c1被选中的概率;(2)求a1和b1不全被选中的概率解(1)从8人中选出数学、物理、化学成绩优秀者各1名,其一切可能的结果组成的基本事件空间为(a1,b1,c1,(a1,b1,c2),(a1,b2,c1),(a1,b2,c2),(a1,b3,c1),(a1,b3,c2),(a2,b1,c1),(a2,b1,c2),(a2,b2,c1),(a2,b2,c2),(a2,b3,c1),(a2,b3,c2),(a3,b1,c1),(a3,b1,c2),(a3,b2,c1),(a3,b2,c2),(a3,b3,c1),(a3,b3,c2),共18个基本事件组成.4分由于每一个基本事件被抽取的机会均等因此这些基本事件的发生是等可能的用m表示“c1恰被选中”这一事件,则m(a1,b1,c1),(a1,b2,c1),(a1,b3,c1),(a2,b1,c1),(a2,b2,c1),(a2,b3,c1),(a3,b1,c1),(a3,b2,c1),(a3,b3,c1).6分事件m由9个基本事件组成,因而p(m).8分(2)用n表示“a1,b1不全被选中”这一事件,则其对立事件表示“a1,b1全被选中”这一事件由于(a1,b1,c1),(a1,b1,c2),事件由2个基本事件组成,所以p().13分由对立事件的概率公式得p(n)1p()1.15分8一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b,c.(1)若直线l:xy50,求点p(b,c)恰好在直线l上的概率;(2)若方程x2bxc0至少有一根x1,2,3,4,就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率解(1)因为是投掷两次,因此基本事件(b,c)为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,4分当bc5时,(b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论