




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分 式知识1、分式的概念。用A,B表示两个整式,AB可以表示成的形式,若B中含有字母,式子就叫做分式例析:在代数式、中,分式有( C ).(A)4个 (B)3个 (C)2个 (D)1个练习:下列各式中,分式的个数为:( ) ,; A、个; B、个; C、个; D、个;作业:1、在式子、中,分式的个数是( )A、1个 B、2个 C、3个 D、 4个2、下列各式中,分式的个数有( )+2, 4xy , , ,,, A、1个 B、2个 C、3个 D、4个知识2、分式有意义的条件:分母不等于0,即 有意义B0 分式无意义的条件:分母等于0,即 无意义B=0 例析:当x = 时,分式无意义当x 时,分式有意义。练习:1当_且x-2 _时,分式有意义 2若代数式 有意义,则的取值范围为_作业:1使代数式有意义的的取值范围是 .2若有意义则的取值范围为 。知识3、分式值为零的条件:分子等于0且分母不等于0;即,=0 A=0且B0例析:如果分式的值为零,那么x等于( ) A.-1 B.1 C.-1或1 D.1或2练习:1当分式的值为零时,x的值为( ). A.0 B.3 C.-3 D.32若分式的值为零,则x的值是( )A2或-2 B2 C-2 D43使分式的值等于零的条件是_作业:1若分式的值为零,那么x的值为( )Ax1或x2Bx0Cx2Dx12、当x_时,分式的值为正数3、(2011内江)如果分式的值为0,则x的值应为_。知识4、分式的符号法则(=)例析:下列各式正确的是( A ) 练习:下列各式正确的是( ) A、; B、; C、; D、知识5、分式的基本性质是:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。即:=(其中M是不等于零的整式)例析:1、把分式改为整数系数而值不变,得_2、如果把分式中的x和y都扩大10倍,那么分式的值( D ) A扩大10倍 B缩小10倍 C扩大2倍 D不变练习:1、填空:(1); (2)2若分式,则a、b应满足的关系式是_ ab _3不改变分式的值,把分子、分母中各项系数化为整数,结果是( D )A B C D4中,x、y都扩大10倍,则分式的值 (C)A扩大10倍 B缩小10倍 C保持不变 D缩小5倍作业:1若分式(x、y为正数)中, x、y的值分别扩大为原来的2倍,则分式的值( )A扩大为原来的2倍 B缩小为原来的 C不变 D缩小为原来的2分式中的值都变为原来的2倍,则分式的值变为原来的( B )(A)2倍 (B)4倍 (C) 6倍 (D) 8倍3将分式中的、的值同时扩大倍,则扩大后分式的值( )A、扩大倍; B、缩小倍; C、保持不变; D、无法确定;4 不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数分式,则 = 5不改变分式的值,使分式的分子和分母的最高次项的系数为正数,则= 知识6、约分:(根据分式的基本性质,把分式的分子和分母中公因式约分,叫做约分)约分分类:(1)当分式的分子分母都是单项式时,先找出分子与分母的公因式,然后约去公因式;(2) 当分式的分子分母都是多项式时,应先分解因式,然后约去分子分母的公因式。最简分式:分式的分子分母不再有公因式的分式,叫做最简分式。温馨提醒:分子或分母的系数是负数时,一般先把负号提到分式本身的前边例析:约分:(1); (2);练习:1分式:,中,最简分式有( B )A1个 B2个 C3个 D4个2计算的结果是( )Aa Bb C1 Db3化简的结果为( )AB CD作业:1下列分式是最简分式的是( )A、; B、; C、; D、;2约分: 3、化简: 知识7、通分:根据分式的基本性质,把异分母的分式化成和原来的分式分别相等的同分母的分式,叫做通分最简公分母:各分母所有因式最高次幂的乘积,叫做最简公分母。例析:1把下列各题中的分式通分:(1), (2),练习:通分:(1) (2),;(3),; (4), 作业:1、分式,的最简公分母为 2、求下列各组分式的最简公分母:(1); (2); (3)3、通分:, ;知识8、分式的运算 (1)加减法: (2)乘除法: (3)乘方()n=(n为正整数)例析:1、(直用法则)计算:.分析:本题可先将括号内的通分,则算乘法,也可以按照乘法的分配律进行计算.解: =3(x+3)-(x-3)=3x+9-x+3=2x+12.2、(采用整体)计算解:原式=3、(裂项相消)计算解:原式=4、(逐步通分)计算解:原式=5、(合理换元)计算解:设,则原式= 练习:1、计算.2、计算.3、计算.解:=x.4化简的结果是()AB CD5化简:_6已知,则M=_ x2 _7一件工程甲单独做a小时完成,乙单独做b小时完成,甲、乙二人合作完成此项工作需要的小时数是(D) (A)ab (B) (C) (D)8在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这段路上、下坡的平均速度是每小时( )A千米 B千米 C千米 D千米作业:1计算: 2计算:; 3、计算:4计算:; 5、计算:6若,试求A、B的值.(A=3,B=2)7在解题目:“当时,求代数式的值”时,聪聪认为只要任取一个使原式有意义的值代入都有相同结果你认为他说的有理吗?请说明理由分析:化简后的结果是某一个固定的常数,就与x的取值无关。解:聪聪说的有理 所以,只要使原式有意义,无论取何值,原式的值都相同,为常数18如果m个人完成一项工作需要d天,则(m+n)个人完成这项工作需要的天数为( C )Ad+n Bd-n C D(点拨:m个人一天完成全部工作的,则一个人一天完成全部工作的,(m+n) 个人一天完成(m+n)=,所以(m+n)个人完成全部工作需要的天数是)9若,则用a表示c的代数式为( )A B来源:学C D来10某人上山的速度为,所用时间为;按原路返回时,速度为,所用时间为,则此人上下山的平均速度为_11、从甲地到乙地全长千米,某人步行从甲地到乙地小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式)12计算= 知识9、条件分式的求值此类题是根据已知条件求分式的值,是考试中的一种常见的题型。例析:1、(巧设参数)已知,求的值解:设=,则,=2、(合理取倒)已知a+=5则=_.解:因为a+=5,所以(a+)2=25,a2+=23.所以=a2+1+=24,所以=3、(巧取特值)若,则分式的值等于_分析:既然,我们就“将计就计”,认定,把它们代入求值式即可得解解:由,不妨令,则=4、(巧选主元)已知xyz0,且3x4yz=0,2xy8z=0,求的值.解:将z看作已知数,把3x4yz=0与2xy8z=0联立方程组,解得 x=3z, y=2z.所以,原式=练习:1、已知,则的值。2、,那么分式的值是_.3、已知的值为( ) A B C D4、若,则=( )A B C D5、已知,求代数式的值6、已知a+=5,则=_作业:1、若a,b都是正数,且= =_ 2、已知,则_3、若,则( )A、23 B、24 C、25 D、27 4已知3m4n,则_5、已知2a3b+c=0,3a2b6c=0,a,b,c0,求的值6、若,则7、已知x=3y,试求的值8、已知:,求分式的值:知识10、幂的运算:同底数幂的乘法:同底数幂相乘,底数不变,指数相加;即,积的乘方:积的乘方,等于把积中各因式分别乘方之积;即,幂的乘方:幂的乘方,底数不变,指数相乘;即,同底数幂的除法:同底数幂相除,底数不变,指数相减;即, 例析:1下列运算正确的是( B )Ax10x5=x2; Bx-4x=x-3; Cx3x2=x6; D(2x-2)-3=-8x62计算的结果是_-2 _3实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是(C)(A)(B)(C)(D)4、(2011达州)计算:练习:1下列运算正确的是( C )A.-40 =1 B.(-2)-1= C.(-3m-n)2=9m-n D.(a+b)-1=a-1+b-12、在:, 中,其中正确的式子有( )A、1个 B、2个 C、3个 D、 4个来源:学&科&网3、成立的条件是( )A、x为大于2的整数 B、x为小于2的整数C、x为不等于2的整数 D、x这不大于2的整数4、n正整数,且则n是( )A、偶数 B、奇数 C、正偶数 D、负奇数5、等于( )A、 B、 C、 D、 6、若,则( )A、abcd B、badc C、adcb D、cadb7空气的体积质量是0.001239克/厘米3,此数保留三个有效数字的近似数用科学记数法表示为( C )A.1.23910-3 B.1.2310-3 C.1.2410-3 D.1.241038、若, 求的值. 9计算作业:1()-2()2= 2下列运算正确的是(D)A.B.C.D.3、计算(1) (2)(3)4、二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为( )A 米 B 米 C 米 D 米5某校师生在为青海玉树地震灾区举行的爱心捐款活动中总计捐款18.49万元把18.49万用科学记数法表示并保留两个有效数字为( )A1.9B19C1.8D186、已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求的值. 7、(2011内江)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是() A、m B、m C、m D、m 8、(2011达州)据报道,达州市2010年全年GDP(国内生产总值)约为819.2亿元,请把这个数用科学记数法表示为8.21010元(保留两个有效数字)知识11、化简求值与分式有关的代数式求值问题是常见问题之一,解答这类问题,应先化简,再求值。化简时,根据题中条件,可先化简要求值的式子,也可先化简已知条件,也可将两者同时化简。例析:求代数式的值:,其中解: 原式= = = 将+ 代入得:练习:先化简、再求值:。解:原式= =当作业:1、先化简,再求值:(),其中x=2005解:原式=2、先化简代数式:,然后选取一个使原式有意义的的值代入求值解: 当时,原式的值为3、(2011达州)先化简,再求值:,其中a=5知识12、分式方程的解法:例析:1、下列关于x的方程,其中不是分式方程的是(C) (A) (B) (C) (D)2、解分式方程解:去分母得去括号得解这个整式方程得经检验是原方程的解所以原方程的解是练习:1解分式方程:(1)+=4 (2) =-12解方程解:原方程可化为,方程两边都乘以,约去分母,得,解这个整式方程,得x=-1检验:当x=-1时,所以,原方程无解3解方程解:原方程可化为:解这个整式方程,得 经检验知是原方程的根作业:1解分式方程:(1) (2) 2用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是( A )ABCD3当a=_时,关于x的方程的根为1。4已知关于的方程的解是正数,则m的取值范围为_ . 5阅读下列材料: , = = 解答下列问题: (1)在和式中,第6项为_,第n项是_ (2)上述求和的想法是通过逆用_法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以相互对消,从而达到求和的目的(3)受此启发,请你解下面的方程:(1)(2)分式减法(3)解析:将分式方程变形为,整理得,方程两边都乘以2x(x+9),得2(x+9)-2x=9x,解得x=2经检验,x=2是原分式方程的根知识13、增根的用法:分式方程的增根是适合去分母后的整式方程但不适合原分式方程的根。产生增根的原因是在方程的两边同乘了“隐形”的零最简公分母,因此,判明是否是增根,即使最简公分母为零,那么就是增根,如果不为零,就不是增根。例析:当为何值时,解方程会产生增根。解:方程两边都乘以得当或时,此方程有增根,当时,当时,所以,当或时,原分式方程会产生增根。(此类问题可按如下步骤:确定增根;化分式方程为整式方程; 把增根代入整式方程即可求得相关字母的值)练习:1已知x=-2是分式方程-=1的增根,则m= 2当m=_-3_时,方程会产生增根3若方程有增根,则它的增根是(B) A0B1C1D1和14、已知关于x的方程有增根,试求的值作业:1、已知分式方程无解,求的值 2、若关于的方程有增根,则的值为_.解:去分母并整理,得,因为原方程有增根,增根只能是,将代入去分母后的整式方程,得.3、若方程有解,则的取值范围是_.解:去分母,整理,得,所以.由原分式方程知或是原方程的增根,即当,或时,原方程有增根,应舍去.所以,当且时,原方程有解,解为.4、若关于的方程无解,则的值是_.解:去分母并整理,得.解之,得.因为原方程无解,所以为方程的增根.又由于原方程的增根为.所以,.5、若方程有唯一解,则的取值范围是_.解:去分母,整理,得.由于是原方程的增根,故,故. 6、当为何值时,分式方程的解不小于?解去分母化为整式方程,得,解得,原方程的解不小于,得又因为x =2, x=3是方程的增根,应舍去,所以且,解得且当且时,分式方程的解不小于知识14、分式方程的应用方法解读:分式方程应用题的解题要领:1、选择合理的未知数;2、认真审题,找准等量关系;3、列出正确的分式方程;4、解分式方程,得解;5、结合实际,保证解要有实际生活意义;6、答,这是不能少的一个环节。解析:1、某一工程,在工程招标时,接到甲、乙两个工程队的投标书施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由解:设规定日期为x天则甲单独完成需要x天,乙单独完成需要(x+6)天,所以,甲的工作效率是,乙的工作效率是,由题意,得:(+)3+(x-3)=1,整理,得:+=1, 解方程,得 x=6经检验,x=6是原方程的根. 所以,甲单独完成需要6天,乙单独完成需要12天,因为,不能耽误工期,所以,方案(2)显然不符合要求;方案(1):1.26=7.2(万元);方案(3):1.23+0.56=6.6(万元)因为7.26.6,所以,在不耽误工期的前提下,选第三种施工方案最节省工程款. 答:在不耽误工期的前提下,选第三种施工方案最节省工程款. 2、某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件两批玩具的售价均为2.8元问第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)解法一:设第二次采购玩具件,则第一次采购玩具件,由题意得整理得 解得 ,经检验,都是原方程的解当时,每件玩具的批发价为(元),高于玩具的售价,不合题意,舍去;当时,每件玩具的批发价为(元),低于玩具的售价,符合题意,因此第二次采购玩具60件解法二:设第一次采购玩具件,则第二次采购玩具件,由题意得整理得 解得 ,经检验,都是原方程的解第一次采购40件时,第二次购件,批发价为(元)不合题意,舍去;第一次采购50件时,第二次购件,批发价为(元)符合题意,因此第二次采购玩具60件练习:1、服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?若设计划每天加工x套,则根据题意可得方程为( )(A) (B)(C) (D)2、某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天学校决定由三个工程队一齐施工,要求至多6天完成维修任务三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍这样他们至少还需要3天才能成整个维修任务求工程队A原来平均每天维修课桌的张数;求工程队A提高工作效率后平均每天多维修课桌张数的取值范围设C队原来平均每天维修课桌x张,根据题意得:这个方程得:x=30经检验x=30是原方程的根且符合题意,2x=60答:A队原来平均每天维修课桌60张设C队提高工效后平均每天多维修课桌x张,施工2天时,已维修(60+60+30)2=300(张),从第3天起还需维修的张数应为(300+360)=600(张)根据题意得:3(2x+2x+x+150)6604(2x+2x+x+150)解这个不等式组得: 3x1462x28答:A队提高工效后平均每天多维修的课桌张数的取值范围是:62x28作业:1、为了营造出“城在林中,道在绿中,房在园中,人在景中”的城市景象,市园林局计划在一定时间内完成100万亩绿化任务。现为配合东部城区打开发的需要,市政俯在调研后将原定计划调整为:绿化面积在原计划的基础上增加20%,并需提前1年完成,园林局经测算知,要完成新的计划,平均每年的绿化面积必须比原计划平均每年多10万亩,求原计划平均每年的绿化面积。解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄皮合同和预售合同(标准版)
- 海外出口合同(标准版)
- 烟草湖北公司真题2025
- 鸡西市鸡冠区招聘公益性岗位就业人员考试真题2024
- 数智基础会计 课件 第4、5章 借贷记账法的运用 工业企业主要业务的核算、会计凭证及其智能化
- 安防监控售后服务方案
- 2025年度勘察设计注册环保工程师资格考试固体废物处理处置复习题及答案
- 注册环保工程师考试(大气污染防治专业案例)全真模拟题库及答案(2025年赣州)
- 2025年安徽省邮政行业职业技能大赛(快递员赛项)备赛试题库含答案
- 2025建筑施工企业安管人员考试(企业主要负责人A类)考前冲刺试题及答案
- 国开学习网山东《机械制造工艺学(本)》形考任务123答案+终结性考试答案
- 照明技术与照明设计 课件 绪论
- PCI术后护理课件
- JG/T 347-2012聚碳酸酯(PC)实心板
- 博弈论视角下的水资源配置优化策略与实践探索
- 耳石症教学课件
- 鱼油产品营销策略-深度研究
- 2025年陕西延安旅游(集团)有限公司招聘笔试参考题库含答案解析
- 餐饮酒水购销合同书
- 人教版初中全三年英语单词带音标
- 国际分工与世界市场教学课件
评论
0/150
提交评论