全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的对称性【学习目标】 课标要求:通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理. 目标达成:圆心角、弧、弦之间相等关系定理.学习流程: 【课前展示】提问一:我们已经学习过圆,你能说出圆的那些特征?提问二:圆是对称图形吗?(1)圆是轴对称图形吗?你怎么验证圆是轴对称图形,对称轴有无数条(所有经过圆心的直线都是对称轴)验证方法:折叠(2)圆是中心对称图形吗?你怎么验证?【创境激趣】把这两个圆叠在一起,使它俩重合,将圆心固定 将上面这个圆旋转任意一个角度,两个圆还重合吗?通过旋转的方法我们知道:圆具有旋转不变的特性即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合圆的中心对称性是其旋转不变性的特例即圆是中心对称图形.对称中心为圆心【自学导航】 如图所示,aob的顶点在圆心,像这样顶点在圆心的角叫做圆心角【合作探究】 尝试与交流按下面的步骤做一做:1在两张透明纸上,作两个半径相等的o和o,沿圆周分别将两圆剪下2在o和o上分别作相等的圆心角aob和aob (如下图示),圆心固定注意:aob和aob时,要使ob相对于0a的方向与ob相对于oa的方向一致,否则当oa与oa重合时,ob与ob不能重合3将其中的一个圆旋转一个角度,使得oa与oa重合 教师叙述步骤,同学们一起动手操作 通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由 结论可能有:1由已知条件可知aob=aob2由两圆的半径相等,可以得到oba=oba=oab和oab3由aobaob可得到abab4由旋转法可知= 刚才到的=理由是一种新的证明弧相等的方法叠合法我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径oa与oa重合时,由于aob=aob这样便得到半径ob与ob重合因为点a和点a重合,点b和点b重合,所以ab和ab重合,弦ab与弦ab重合,即abab在上述操作过程中,你会得出什么结论?在等圆中,相等的圆心角所对的弧相等,所对的弦相等上面的结论,在同圆中也成立于是得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等 【展示提升】 典例分析 知识迁移例题: 如图,ab,de是o的直径,c是o的一点,且,be与ce的大小有什么关系?为什么?(过程见课本)【强化训练】 (补充例题)例如图,在o中,ab、cd是两条弦,oeab,ofcd,垂足分别为ef(1)如果aob=cod,那么oe与of的大小有什么关系?为什么?(2)如果oe=of,那么与的大小有什么关系?ab与cd的大小有什么关系?为什么?aob与cod呢?【归纳总结 】 通过这一节的学习,在得出本节结论的过程中,回忆一下我们使用了哪些研究图形的方法?(同学们之间相互讨论、归纳)利用旋转的方法得到了圆的旋转不变性,由圆的旋转不变性,我们探究了圆心角、弧、弦之间相等关系定理【板书设计】 3.2 圆的对称性1 2 3 【教学反思】、本节课的教学策略是通过教师引导,让学生观察、思考、交流合作活动,让学生亲身经历知识的发生、发展及其探求过程,再通过教师演示动态课件及引导,让学生感受圆的旋转不变性,并能运用圆的对称性研究圆中的圆心角、弧、弦间的关系定理.同时注重培养学生的探索能力和简单的逻辑推理能力.体验数学的生活性、趣味性,激发他们的学习兴趣.(1)情景引入中运用媒体形象直观的展现了圆心角、弧、弦之间的关系,激发学生的学习兴趣,并让学生体会到数学对称之美(2)在探究圆的旋转不变性和探究圆心角、弧、弦之间的关系定理时,教师应用白板的旋转功能让学生观察猜想证明归纳的数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿化合同新增的协议
- 私宅建房施工协议书
- 电视剧摄影合同范本
- 短视频制作协议合同
- 研发检测费合同范本
- 私房装修协议书范本
- 经营指标承诺协议书
- 碧桂园车位合同协议
- 电力投资协议书范本
- 矿山山场租赁协议书
- 2025福建漳州市九龙江集团有限公司招聘32人备考题库附答案详解(考试直接用)
- 汽车制造行业年终述职
- GB/T 46621-2025机械式停车设备报废条件
- 西安科技大学高新学院《电气工程专业英语》2024-2025学年第一学期期末试卷
- 2025新疆维吾尔自治区融资担保有限责任公司招聘6人人笔试历年参考题库附带答案详解
- 广东省领航高中联盟2025-2026学年高三上学期12月考试语文试卷
- 股骨间粗隆骨折护理查房
- 【英语】北京市朝阳区2024-2025学年高一下学期期末考试试题(解析版)
- 2025心血管疾病患者血糖波动管理的专家共识课件
- (2026年)生命的拥抱-海姆立克急救法培训课件
- 煤矿电瓶车运输 培训课件
评论
0/150
提交评论