




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学期中复习-解答题部分1.1.(北京文科)某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买商品顾客人数甲乙丙丁85()估计顾客同时购买乙和丙的概率;()估计顾客在甲、乙、丙、丁中同时购买中商品的概率;()如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?解析:()从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为.()从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为. ()与()同理,可得:顾客同时购买甲和乙的概率可以估计为,顾客同时购买甲和丙的概率可以估计为,顾客同时购买甲和丁的概率可以估计为,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.1.2(天津文科)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.(I)求应从这三个协会中分别抽取的运动员人数;(II)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.解析:(I)应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2;(II)(i)从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为,共15种.(ii)编号为的两名运动员至少有一人被抽到的结果为, , ,共9种,所以事件A发生的概率 1.3某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在29.94,30.06)的零件为优质品从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂: 乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.解析:1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为64%.(2) 所以有99%的把握认为“两个分厂生产的零件的质量有差异” 2.1如图,为多面体,平面与平面垂直,点在线段上,OAB,OAC,ODE,ODF都是正三角形。()证明直线;()求棱锥的体积.解析:(I)证明:设G是线段DA与EB延长线的交点. 由于OAB与ODE都是正三角形,所以=,OG=OD=2,同理,设是线段DA与FC延长线的交点,有又由于G和都在线段DA的延长线上,所以G与重合.=在GED和GFD中,由=和OC,可知B和C分别是GE和GF的中点,所以BC是GEF的中位线,故BCEF. (II)解:由OB=1,OE=2,而OED是边长为2的正三角形,故所以过点F作FQDG,交DG于点Q,由平面ABED平面ACFD知,FQ就是四棱锥FOBED的高,且FQ=,所以2.2如图,四棱锥P-ABCD中,PA底面ABCD,ABAD,点E在线段AD上,且CEAB。(I)求证:CE平面PAD;(11)若PA=AB=1,AD=3,CD=,CDA=45,求四棱锥P-ABCD的体积解析:(I)证明:因为平面ABCD,平面ABCD,所以因为又所以平面PAD。(II)由(I)可知,在中,DE=CD又因为,所以四边形ABCE为矩形,所以又平面ABCD,PA=1,所以2.3如图,四面体ABCD中,O、E分别是BD、BC的中点,求点E到平面ACD的距离。【解】设点E到平面ACD的距离为, 在中, 而点E到平面ACD的距离为2.4如图,已知正三棱柱的侧棱长和底面边长为1,是底面边上的中点,是侧棱上的点,且。求点到平面的距离。【解】过在面内作直线,为垂足。又平面,所以AM。于是H平面AMN,故即为到平面AMN的距离。在中,。故点到平面AMN的距离为1。2.5 如图,已知三棱锥的侧棱两两垂直,且OA=1,OB=OC=2,E是OC的中点。求O点到面ABC的距离; 【解】取BC的中点D,连AD、OD。 ,则BC面OAD。过O点作OHAD于H,则OH面ABC,OH的长就是所要求的距离。,。 面OBC,则。,在直角三角形OAD中,有 (方法二:由知:)3.1、数列中,为的前n项和,且满足(1)求证:是等差数列(2)求的通项公式3.2已知数列满足(1)证明数列是等差数列,并求数列的通项公式和前项和(2)求数列的前项和解:(1),首项为2=(2)3.3、已知数列中,数列满足.(1)求证是等差数列;(2)求数列中的最大项与最小项,并说明理由.(1)(2)3.4成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的()求数列的通项公式;()数列的前n项和为,求证:数列是等比数列.解:(1)设成等差数列的三个正数分别为a-d,a, a+d.依题意,得a-d+a+a+d=15,解得a=5.所以中的依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去).故的第3项为5,公比为2,由,即,解得所以是以为首项,2为公比的等比数列,其通项公式为.(2)数列的前n项和即所以因此是以为首项,公比为2的等比数列.3.5、数列前n项和,若,其中c为不等于-1和0的常数(1) 求证是等比数列(2) 设公比是,求通项公式(1)(2),取倒数构造等差数列3.6已知数列中,.,设求数列的通项公式;形如的递推数列都可以用倒数法构造新数列从而求得通项。3.7、已知,求补充:裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:;,;.3.8已知等差数列满足:,的前n项和为()求及;()令bn=(nN*),求数列的前n项和【解析】()设等差数列的公差为d,因为,所以有,解得,所以;=。()由()知,所以bn=,所以=,即数列的前n项和=。4.1.设 均为正数,且.证明:(I)若 ,则;(II)是的充要条件.解析:(I)因为 4.2.已知关于的不等式的解集为(I)求实数的值;(II)求的最大值.解析:(I)由,得则,解得(II)当且仅当即时等号成立,故5.1.在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为 试题分析:曲线的直角坐标方程为,曲线的普通方程为,由得:,所以与交点的直角坐标为,所以答案应填:5.2.在直角坐标系中,曲线 (t为参数,且 ),其中,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线 (I)求与交点的直角坐标;(II)若与 相交于点A,与相交于点B,求最大值.分析:(I)把与的方程化为直角坐标方程为,联立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿科学测试题及答案-免疫性疾病
- 2025年美容美发师招聘面试题及答案参考
- 2025见证取样员考试题库及答案
- 2025年注册验船师资格考试(C级船舶检验法律法规)复习题及答案二
- 2025年公路水运工程试验检测师《桥梁隧道工程》考试题库及答案
- 2025年汽车销售市场招聘笔试题目及答案解析
- 桥梁修补专业知识培训内容课件
- 桑葚养护知识培训课件
- 2025年注册验船师资格考试(C级船舶检验法律法规)冲刺模拟试题及答案一
- 2025年珲春市老年人健康管理试题及答案(培训前)
- 学堂在线 日语与日本文化 章节测试答案
- 完善贷款核销管理办法
- 福建省福州第八中学2025届高一下化学期末教学质量检测试题含解析
- 2025晋中辅警考试真题
- GB/T 45660-2025电子装联技术电子模块
- 邮政快递服务质量评价指标体系构建-洞察阐释
- 呼吸衰竭个案查房
- 2025年云南省中考历史试卷真题(含答案解析)
- 教育事业“十五五”发展规划实施方案
- 2025年初级文秘职业技能鉴定理论考试题库(共500题)
- 内墙腻子劳务分包协议
评论
0/150
提交评论