蒋文浩毕设论文_简版报告.pdf

渗透检测工艺方法和环境对检测结果的影响研究(南航)

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:39095770    类型:共享资源    大小:4.09MB    格式:ZIP    上传时间:2020-01-10 上传人:遗**** IP属地:湖北
30
积分
关 键 词:
渗透 检测 工艺 方法 环境 结果 影响 研究 南航
资源描述:
渗透检测工艺方法和环境对检测结果的影响研究(南航),渗透,检测,工艺,方法,环境,结果,影响,研究,南航
内容简介:
259The 10th International Conference of the Slovenian Society for Non-Destructive Testing Application of Contemporary Non-Destructive Testing in Engineering September 1-3, 2009, Ljubljana, Slovenia, 259-265NONDESTRUCTIVE TEST TECHNOLOGY FOR THE COMPOSITES Keynote lecture B. Boro Djordjevic Materials and Sensors Technologies, Inc. 798 Cromwell Park Drive; Suite C; Glen Burnie, MD 21061 USA bbd ABSTRACT When manufacturing composite structure, material and structural components are created concurrently. Thus, for composite materials in critical structural applications, it is more important than ever to independently assure structural integrity. Complexity of the advanced composite materials manufacturing and composite in service maintenance represents challenges in developing optimized nondestructive tools and tests. Traditional metals based NDT methods are inappropriate and often misleading when applied to anisotropic and inhomogeneous composite materials. In advanced technology applications such as aerospace and with industrial emphasis on economics and safety, it is critical to use and develop robust and practical composites NDT methods. Composite NDT encompasses a range of modified traditional and new tools including ultrasonic, x-ray, acoustic emission, thermal, optical, electrical and a variety of hybrid methods. This paper provides overview of the current use of the NDT tools in the composite applications. Key words: NDT, NDE, composites 1.Introduction There are enormous mechanical advantages for using composite materials. Table 1 and Figure 1 illustrate the specific properties benefits of the composites structural use over traditional industrial materials. Fiber reinforced organic matrix composite materials specific-properties can double or triple the load carrying capacity over the traditional metals. This materials benefit enables structural designs that outperform the conventional application limitations commensurately improving system performance such as reducing weight, increasing fuel efficiency or increasing speed. 1,2,3 260Table 1: Illustration of specific strength values for the composite materials in comparison to traditional materials. Fig. 1: Graphic comparison of the composite materials properties to traditional materials. Additionally, composite have better specific stiffness and their anisotropic character can be customized to the structural load requirements. The use of composites is acceleration and now spans transportation industry applications including next generation aircraft such as new Boeing 787.Composites are in wide use for marine applications and have been revolutionary in sporting applications such as skiing, tennis rackets or golf clubs. 2612. Composite Materials and Testing Background Composite structures are often complex and formed by layers of dissimilar materials. Figure 2 illustrates complexity of the composite cross-sections. For weight-performance sensitive applications such as aerospace, composite materials are now common in critical structural components.3 Fig. 2: Typical cross-sections of the composite materials. Composite mechanical damage is typically in the form of delaminations or disbonds (laminate-to-laminate or laminate-to-core), broken fibers due to impact, fatigue damage that affects the zone of composite material via micro cracking, fiber delaminations, fiber breaks and overall loss of mechanical modulus, or can be caused by thermal damage from prolonged exposure to heat above resin cure temperatures as well as combination of effects due to extreme operational conditions. The detection and evaluation of damage in composites is compounded by the fact that damage is not visible to the naked eye and can occur in many different forms Table 2 shows a list of possible defects and damage found in composite materials. It should be noted that although the composite materials have been used for a long time, including in critical structural applications, the effects of defects, damage mechanisms, fatigue and failure mechanisms are not mature and well understood. Connection between NDE/NDT/NDC information and mechanical performance is also not well established. Table 3 is a listing of the nondestructive testing and evaluation methods that are applicable to composite materials and structures. 262Table 2: Listing of typical defects and damage found in the composite materials. Table 3: Listing of the nondestructive testing and evaluation practices for the composite materials. Composite materials structural integrity can be compromised via many mechanisms including presence of discontinuities or loss of mechanical properties. Because of composite materials complexity, complexity of the part geometry and often a limited part access, materials damage and materials condition sensing cannot be achieved via conventional NDT/NDE/NDC methodology. Of all nondestructive methods, only ultrasonic methods are directly sensitive to mechanical changes 263and can be used to directly assess the mechanical condition and integrity of the composite structure. Majority of NDT methods are based on and originated from metals experience. Many current test procedures are inadequately developed to properly and directly tackle the composite structural issues. The composite testing still requires fresh look at availability of new and advanced test methods better adapted to the unique composite material requirements. 3. Examples of Composite Testing methods Since introduction of bonding and composites into the airframe structures, extensive Nondestructive Inspection (NDI) is often performed to assure structural integrity. Composite ultrasonic inspection process is usually limited to a single point measurement across the thickness of the composite material and component coverage is achieved via scanning. Ultrasonic imaging C-scan as shown in Fig. 3 is dominant inspection tool in many aerospace composite manufacturing operations. Modern computerized C-scan has enormous advantages over manual testing in reproducibility and presentation of the ultrasonic tests. However, even for manufacturing subassemblies, ultrasonic C-scan, is often difficult to execute and is not practical in many complex structural configurations such as the leading edges or other complex sections of the flight control surfaces. Point-by-point ultrasonic tests crate composite material sound attenuation maps. Shown in Figure 3, these so called ultrasonic C-scan maps can potentially locate mechanical discontinuities such as delaminations, impact damage or fiber fatigue damage 4,5. Fig. 3 Ultrasonic C-scan of the composite plate outlining disbond areas with increased ultrasonic attenuation. The ultrasonic C-scan maps are very effective in finding mechanical discontinuity but cannot determine material mechanical state. Interpretation of the individual pixel crated from gated ultrasonic signal can be difficult and misleading. This technology originally adapted for testing adhesive bonding is being further refined and adapted to composite applications. By use of advanced transducers, better data collection via many signal gates and aided with digital signal processing, new C-scan tests are very effective NDT tool for composite structures.5 264Although extensively used in metals for detection of voids and cracks, X-ray technology had undergone extensive modifications for the composite use. Most new system use real time imaging that enables effective imaging of the geometrical features in the composite structures. Shown in Figure 4 is a sequence of real time micro-focus X-ray images of the composite honeycomb. In field applications, X-rays can detect liquid intrusion in cells or impact damaged cell walls. Fig. 4: Sequence of the magnified X-ray images of the composite honeycomb. X-rays provide contrasting images of filed cells and very detail geometry of the cells walls. Optical methods are used for rapid large area screening of the composite materials. Subsurface composite damage can be often sensed via Sherography. Image in Figure 5 * is a result of this optical method sensitivity to minute surface changes due to structural defects inside the honeycomb part. Advanced Techniques such as X-ray tomography, laser ultrasonic, holography, laser-optical, vibro-thermography, acousto-ultrasonic, D-sight, neutron radiography, microwaves or thermal time-resolved methods are in development and will contribute to future NDT composite capabilities. Emerging NDT Technologies such as in-process monitoring, in-situ sensors, remote sensors, or embedded sensors are becoming part of the composite use. In-process organic matrix composites cure monitoring and control can assure better final products 4,6,7. Combination of the NDT methods and a need for continuous monitoring of the composite material structural condition, supports a rapid developments in health monitoring applications and eventual prognostics of the structural degradation. 265Fig. 5: Shearography image of stabilized honeycomb part showing disbonds and potted honeycomb repairs (Data provided by the Material Physics & NDE Laboratory at The Aerospace Corporation, S. Kenderian) 4. Conclusions There is a long list of NDT methods and sub techniques that are applicable for composite testing. No one method currently has ability to meet all the needs for the composite integrity assessment. Historically focused on defect, emerging technology work is in areas of health monitoring and materials mechanical properties characterization. As critical composite structures become part of commercial use such as new Boeing 787, additional developments will be needed to enable economical, full mechanical integrity characterization of these systems. 5. References 1George Lubin, Handbook of Composites, Van Nostrand Reinhold Co, London 1999 2Joseph C. Salamone, Editor-in Chief, Concise Polymeric Materials Encyclopedia, CRC press, New York 2001 3Serope Kalpakjian, Steven R. Schmid, Manufacturing Engineering and Technology, Prentice Hall, Uper Saddle River, NJ, Fourth Edition 4B.B. Djordjevic, Henrique Reis, editors, G. Birnbaum, B. A. Auld, Technical editors, Sensors for Materials Characterization, Processing, and Manufacturing ASNT Topics on NDE Vol. 1,published by ASNT, Columbus OH, 1998. 5B.B. Djordjevic, Advanced Ultrasonic Probes for Scanning of Large Structures, Proc. Ultrasonic International 93 Vienna, Austria, July 1993, Pub. Butterworth Heinemann 1993 6B. Boro Djordjevic, D. Cerniglia, “Remote Non-contact Testing of Aircraft Structures” 2001 USAF Aircraft Structural Integrity Program Conference, 10-13 December 2001, Williamsburg VA7D. Cerniglia, K. Y. Jhang, and B. B. Djordjevic “Non-Contact Ultrasonic testing of Aircraft Lap Joints” 15th Worl Conference on NDT, , Rome, Italy, Editor AIPnD, NDT.net October 2000 毕业设计(论文)开题报告 题目 渗透检测检测工艺方法和环境对检测结果的影响 专 业 名 称 测控技术与仪器 班 级 学 号 11081323学 生 姓 名 蒋文浩指 导 教 师 金信鸿填 表 日 期 2015 年 4 月 5 日一、选题的依据及意义:渗透检测工艺方法就检测原理而言比较简单。人们比较关心渗透检测的灵敏度,渗透检测的可靠性及影响可靠性的因素。有人曾断言,渗透检测使用的日子不会很长,将会被淘汰,这一断言与渗透检测的灵敏度低,可靠性低不无关系。但无论如何,渗透检测有其自己的优势(可检测非铁磁性材料)有其适用性及存在的合理性。研究渗透检测灵敏度影响因素,提高其检测灵敏度即可提高其可靠性,可以让渗透检测的发挥有更大的空间。渗透检测灵敏度及可靠性影响因素有很多方面,本论文实验中研究了逆向工艺规范采用对比实验法研究了这个因素对渗透检测灵敏度的影响,具有一定的参考价值。而其中检测工艺参数对灵敏度的影响不容忽视,在渗透检测时,有时会因为操作的方法问题,操作的环境改变,影响缺陷的检出,从而产生漏检。为了提高渗透检测的灵敏度,应采取有效措施,改变操作方法和环境条件,以满足工艺要求。用B型镀铬试块检验操作工艺正确性,用铝合金A型试块对非标准温度下的检测方法作出鉴定,提高渗透检测可靠性。检测工艺决定着渗透检测工作质量,随着无损检测方法的标准化,渗透检测的工艺方法趋于程序化。渗透检测方法的不同,其实现方法程序的基本步骤亦不同。针对现行标准JB/T 47305-2005附录A工艺程序图示中的基本步骤进行剖析,指出标准中存在不恰当的归类用语和逻辑上示意不清地方,并重新调整附录A工艺程序的图示,为今后标准的进一步修订提供参考。二、 渗透检测国内外研究概况及发展趋势:2.1、国内外研究现状2.1.1、国外研究现状正渗透探伤的工业应用始于本世纪初,除目视检查外,它是应用最早的无损检测方法.因为渗透探伤最简单易行,其应用遍及现代工业的各个领域.近年来,由于过滤性微粒型渗透剂的出现,使渗透探伤技术的应用扩展到多孔性材料.国外研究表明,渗透探伤对表面点状和线状缺陷检出概率高于磁粉检验,是一种最有效的表面检验方法.Brown JS4认为,在目前的产品质量检测中,渗透探伤可能是应用最普遍的一种无损检测方法.促进渗透检测技术发展的主要是航空工业和原子能工业,这些部门对可靠性要求极高,且大量使用铝合金和奥氏体不锈钢,表面检测非渗透探伤莫属. 渗透探伤发展概况和现状渗透探伤对表面缺陷检测能力及检测的可靠性,取决于渗透探伤剂性能和操作工艺正确与否,因此几十年来,渗透探伤技术发展的主线一直是探伤剂的研制及其性能评价,探伤操作工艺的改进及其标准化,以及与之有关的渗透探伤理论的研究。.2.1.2国内研究状况70 年代后期, 国内探伤剂研究取得两项重大突破, 使我国渗透探伤技术赶上国外先进水平。沪东造船厂陈时宗研制成功可检测零点几微米宽的表面裂纹且基本无毒害的着色探伤剂, 其灵敏度、低毒性和其它性能都达到或优于国外先进的着色探伤剂, 并在国内首先配用了先进的压力喷罐技术, 很快在国内广泛应用, 极大推动渗透探伤技术的发展。中科院上海有机化学研究所等单位, 成功研制了新型荧光染料及相应的基本无毒害的荧光探伤剂, 其灵敏度、低毒性及其它性能都达到或优于国外先进的荧光探伤剂。上述两项成果一投放市场, 就得到广泛应用。2.2、渗透检测工艺的状况和发展:与其它四种常规无损检测方法相比, 渗透探伤操作一艺更依赖于实验的结果, 而较缺乏理论的支承。因此, 渗透探伤发展的过程, 就是探伤工艺不断改进完善的过程。近20 年来, 国内外发表的渗透探伤论文, 有关工艺方法方面的约占70 %。80 年代初,B R c3 详细分析了渗透探伤中影响可靠性的各种变化因素, 提出一提高渗透探伤可靠性的仁艺措施,F u s k A M l o t 提出改善渗透探伤可靠卞七的预清洗技术, 这些都先后被国外标准引用。渗透探伤技术的工业应用早于其它方法, 但渗透探伤标准制订却落后于其它无损检测方法。40 年代后期到50 年代中期, 美、苏、英、法、日等国才先后制订了渗透探伤技术标准, 如日本IJ S z“ 渗透探伤”首次制订是1995年。目前, 国内外渗透探伤标准已经较为完善, 但仍存在以下问题。一些关键的工艺参数, 无法从理论上得到论证, 完全是根据实验和实践得来的, 如渗透时间、显象时间和显象层厚度等。因此, 各国标准规定的渗透时间及显象时间差别很大,同样是检测钢焊缝, 不同国家标准规定的渗透时间最少s m in , 最长达60 m in。同一个标准, 不同年份版本, 渗透时间相差也极大, 如日本JIS 2 2 4 4 3 一84 规定的渗透时间比1 9 7 4 年版本少一半。哪个渗透时间更合适? 无法从理论上得到论证。显象时间、乳化时间、显象层厚度等至关重要的工艺参数, 也是如此。显然, 为了保证渗透探伤标准的可靠性、准确性和一致性,还需做大量工作。渗透探伤标准不同年份的修订版本, 有关工艺方法内容的补充、删减及改动最多, 并日趋一致。3三、研究内容及实验方案:3.1、研究内容渗透检测的检测工艺方法和环境对检测结果的影响,其中主要包括检测表面前工件温度的变化和采用的工艺操作方法以及工件检测前的清洗对检测结果的影响。3.2、实验方案一、实验设备 工件AL10-1、渗透液、显像干粉、清洗剂、黑光灯、B型试块二、实验内容1检测表面前工件温度的变化对结果的影响第一组,将B 型试块预清洗后,将其干燥10 分钟,随后将试块的温度控制到10C放入渗透液中10 分钟,再干燥,显像,缺陷部位的显示标示出来;第二组,将B 型试块预清洗后,干燥10 分钟,温度调节为20C,按照第一组中的工艺步骤,缺陷部位的显示 标示出来;第三组,将B 型试块预清洗后,干燥10 分钟,温度调节为30C,按照第一组中的工艺步骤,缺陷部位的显示 标示出来;依次做到60C,通过工件温度从10C到60C的变化来对比所检测的缺陷的差别。2 操作方法对结果的影响第一组,选取一个工件,选用B型试块检验灵敏度符合要求后,用水洗型荧光检测方法对工件进行渗透25分钟、清洗、显像后记录缺陷的显示第二组,选同一工件,用清洗剂彻底清洗一遍,对工件各个部位进行干燥后,用水洗型荧光检测方法对其进行渗透25分钟、清洗、显像,再观察缺陷的显示 第三组,选取型号AL10-1的钢板焊缝,预清洗后,干燥工件,再用着色法对其进行渗透15分钟、用清洗剂清洗多余的渗透剂、再显像10分钟,再观察缺陷的显示第四组,选取型号AL10-1的钢板焊缝,预清洗后,干燥工件,用水洗型荧光检测法对其进行渗透、清洗、干燥、显像,记录缺陷显示。四、目标及工作进度4.1研究目标找到尽量合适的检测工艺参数,包括正确的操作方法和合理的操作环境,通过实验确定正确的工艺操作流程,来提高检测的准确性,避免漏检、错检。4.2工作进度1.英文资料翻译及相关资料检索 3月09日3月20日2.开题报告的完成 3月20日4月5日3.学习渗透检测的原理、方法 4月1日4月15日4.相关试件的设计及制作 4月16日5月12日5.实验 5月13日5月28日6.数据分析及相关参数的修正 5月29日6月1日7.撰写论文 、准备答辩 6月02日6月26日五、参考文献:1 董海忠,朱民.对一份渗透检测报告的质疑J. 中国化工装备. 2003(02) 2 马丽娟,谭剑.渗透检测在液化石油气罐车探伤中的应用J. 科技创业家. 2013(09) 3 王益洲.渗透检测操作的方法和环境对结果的影响J. 广州化工. 2013(15) 4 胡侃.渗
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:渗透检测工艺方法和环境对检测结果的影响研究(南航)
链接地址:https://www.renrendoc.com/p-39095770.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!