免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学科:数学 授课教师:熊斯莉 年级:八 课 题122 1 三角形全等的判定(1)-sss课时教学目标知识与技能掌握三角形全等的“边边边”条件及应用过程与方法经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程情感价值观通过对问题的共同探讨,培养学生的协作精神教学重点三角形全等的“边边边”条件及应用教学难点三角形全等条件的探索过程教学方法创设情境主体探究合作交流应用提高媒体资源多媒体教 学 过 程教学流程教 学 活 动学生活动设计意图复习过程引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等反之,这六个元素分别相等,这样的两个三角形一定全等思考回 答复习旧知创设情境提出问题提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?讨论交流,总决归纳提出问题建立模型探索发现1、 探究1,满足一个条件: 只有一个角对应相等 只有一条对应边相等 在黑板上或者ppt上展示出图形,举出不成立的反例。结论:满足一个条件不一定使得三角形全等。2、 探究2,满足两个条件: 两条边对应相等 两个角对应相等 一条边一个角对应相等 在黑板上或者ppt上展示出图形,举出不成立的反例。结论:满足两个条件不一定使得三角形全等。3、 探究3,满足三个条件: 三条边对应相等 三个角对应相等 两条边一个角对应相等 两个角一条边对应相等 今天我们重点探讨三条边都对应相等。小组确定ABC的三边长,每一位小组成员独立画出满足条件的三角形并剪下来,与小组其他成员的叠合,观察是否重合? 讨论之后请个小组分享成果。结论:三边对应相等的两个三角形全等 归纳:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)用符号语言表示为:在ABC和 ABC中ABAB(已知)BCBC(已知)ACAC(已知) ABC ABC(SSS)让学生按给出的条件作出三角形三边对应相等的两个三角形全等应用新知体验成功训练1、CABDO议一议:在下列推理中填写需要补充的条件,使结论成立:如图,在AOB和DOC中ABCD训练2、如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由。ABCD例3已知:如图,AB=AD,BC=CD,求证:ABC ADC例4:已知:AC=AD,BC=BD,求证:AB是DAC的平分线.尝试书写推理过 程巩固新知巩固练习1、基础练练手DABC练习1、如图,在四边形ABCD中,AB=CD,AD=CB,求证: A= C.你还能说明ABCD,ADBC吗?ABCD已知: 如图,AC=AD ,BC=BD. 求证: CD.ABC练习4:已知:如图,AB=AC,DB=DC,请说明B =C成立的理由DADBCFE如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由课堂小结1、三边对应相等的两个三角形全等2、规范书
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GBT 51132-2015 工业有色金属管道工程施工及质量验收规范
- 2025建筑工程广告合同
- 2025货款抵押货物合同范本
- 护理学考验考试题及答案
- 2025年低空经济产业政策实施效果评估报告
- 汽车维修保养供应商合同
- 江苏2021年事业单位招聘考试真题及答案解析
- 2025年老年能力评估试题及答案
- 泉州注册测绘师精讲试题及答案
- 注册测绘师综合能力真题及答案解析
- 2025年天津入团考试试题及答案
- 肾内科化验单解读
- 湖北省中小学生命安全教育课程标准(实验)
- 初中英语教学论文范文3000字
- 2025体育与健康课程标准深度解读与教学实践
- 中国心血管病一级预防指南解读
- 乌孜别克族课件
- 2025年树枝工艺品项目可行性研究报告
- smt考试试题及答案
- 2025年中国邮政集团工作人员招聘考试笔试试题(含答案)
- 人教版初中化学九年级上册第六单元《碳和碳的氧化物》课题1《金刚石、石墨和C60》第二课时《单质碳的化学性质》教学设计
评论
0/150
提交评论