济三煤矿4.0Mta新井设计含5张CAD图-采矿工程.zip
收藏
资源目录
压缩包内文档预览:
编号:39269035
类型:共享资源
大小:7.23MB
格式:ZIP
上传时间:2020-01-11
上传人:QQ14****9609
认证信息
个人认证
郭**(实名认证)
陕西
IP属地:陕西
50
积分
- 关 键 词:
-
煤矿
4.0
Mta
设计
CAD
采矿工程
- 资源描述:
-
济三煤矿4.0Mta新井设计含5张CAD图-采矿工程.zip,煤矿,4.0,Mta,设计,CAD,采矿工程
- 内容简介:
-
把解压后文件夹中的Mine2010.shx和循环图表10形.shx这两个文件复制到你CAD2010安装目录下的“Support”文件夹中(如果此时已打开CAD需要关闭重新打开CAD才能生效),然后把解压后的文件夹放到你能找到的任何地方(加载线型的时候要选择该文件夹中相应的“*.lin文件”)然后打开CAD加载相应线型即可。 版权没有,盗版不究 2012.3.30英文原文Detecting Abandoned Coal Mine Entries by High Resolution Earth Resistivity MethodXianxin Shi, ProfessorShu Yan, ProfessorMingsheng Shen, ProfessorXian Branch, CCRI (China Coal Research Institute) Xian, Shaanxi, ChinaABSTRACTIn surface electrical exploration the high resolution earth resistivity method (HRRM) is a very effective method for detecting abandoned drift mines workings. When the abandoned mines are more than 500 ft (150 m) deep, its detection capability reduces greatly and requires more effort to implement. In Yan Quan coal mine, Shanxi province, we tried to adapt this method for underground application. Two survey lines were designed with the spacing of current and potential poles 20 m and 10 m, respectively and measuring points at 2m. The measurement radius of I line and II line were 140 m and 60 m, respectively, and the infinitely far pole was 12002000 m from the survey line. (Note the I and II lines are located on the north and south ribs of main tunnel, respectively). The survey results showed that abandoned workings were located at 25-70m, Survey Line I and at 80-110m, Survey line II. Based on this finding, the longwall panel gateroads and set up entry were properly located thereby providing safe mining of the No. 15 Coal seam.Key Words: Abandoned coal mine, High resolution earth resistivity, Underground electrical explorationINTRODUCTIONThe development of roadways for the 9th mining district for the #15 coal seam, Nanzhuang Coal Group Co Ltd, Yangquan, Shanxi Province are approaching the Hougou abandoned gobs. Since the data regarding the extent and condition of Hougou gobs were not reliable, it is difficult to finalize the panel layout for the #15 coal seam. In order to provide sufficient geological data for rational layout and safe development of mains and setup entry, the Hougou gob conditions (i.e. area and location) must be known clearly first.Based on our experience gained in the past 10 years, when coal seam is less than 150 m deep, the high resolution surface resistivity method can produce better results. But the Hougou abandoned mine gobs were 350 m deep. For this reason, we tried to use the high resolution resistivity method underground to detect the gobs from entry ribs to facilitate the development of #15 coal seam.CHARACTERISTICS OF EARTH RESISTIVITYThe #15 coal is the major coal seam in the reserve. Seam thickness is 5.25-6.63 m averaging 5.89 m and consistent throughout the whole reserve. It is anthracite with low-medium ash, very low-low sulphur and high heating value. Its electric resistivity is relatively low. After mining, if the gob is not flooded with water, its apparent resistivity will increase significantly and behave as a high-resistivity material regardless whether the gob is caved or not. This is the prerequisite of physical property for the application of high resolution resistivity method.UNDERGROUND HIGH-RESOLUTION RESISTIVITY METHODAs mentioned above, good seam quality is the prerequisite for high resolution resistivity method. But what devices are needed to perform the resistivity exploration deserves further study. Due to the fact that a gob is a man-made isolated geological body and its not uniform as a bedded deposit, special devices that can superimpose its electric information and focus on its location such that it can distinguish it from the surrounding rocks, must be used to detect this type of geological body.The underground high resolution resistivity method employs special three-pole devices, i.e. monopole-dipole device densely dispatched that can increase the level of observation and control, add the number of superposition, enlarge the amount of information, and improve the resolution of gob detection so that the gobs can be identified from the surrounding rocks. Figure 1 shows the array of survey stations.The parameters adopted for the underground earth resistivity method are:1.Distance between power supply stations, A and A: 20 m2.Distance between survey stations, C and C: 2 m3.Distance between poles, MN: 10 m4.Radius of survey lines: Line I 140 m, Line II 60 m5.Location of infinite distance pole: 1,200 2,000 m from the lines.Figure 1 Survey array for underground earth resistivity methodUnderground survey data were collected by flameproof microvolt digital direct current resistivity meter. In underground survey, the power supply station was located at 20 m interval. For every power supply station, the voltage difference between both directions of measurements must be recorded. The maximum distance of MN on both sides of each power supply was 140 m, i.e. the maximum offset distance was 140 m. This way double coverage observation can be realized and the exploration area can cover up to 140 m.In order to insure the accuracy of the data obtained underground, the following measures were adopted:1.In order to insure the power supply was well-grounded, a horizontal hole in the coal seam was drilled at its designated location. Mud and salt water were added. After insertion of the pole, the hole was tamped tight.2.The bronze pole must be inserted sufficiently deep, reaching wet spots, and be tamped tight in order to insure data obtained were steady and reliable.3.Batteries were changed frequently to insure the voltage of power supply was steady and current was sufficient. This is the key to insure the accuracy of the data obtained.4.During the course of survey, always check if the location of the power supply was accurate and data obtained were steady. Once abnormal conditions were observed, the pole location must be re-confirmed, additional poles added, and measurements repeated until the errors obtained were within the limits allowed by regulations.Due to the fact that the instrument employed was steady and precise. So with proper handling of the poles, the ground resistance was greatly reduced. As a result, the signal was stronger and the accuracy of data increased. During the course of survey measurement, the pole of MN was re-confirmed frequently. If abnormal data appeared, observations were repeated. This way the accuracy and reliability of the collected data were insured. DATA ANALYSISThe high resolution resistivity survey was performed along the survey lines simultaneously for measurements in cross-section and depth. Data analyses were divided into two steps: First, check the voltage difference at every supply pole and see if it decreases gradually with distance away from the pole. If there is an abrupt change, it must be analyzed why so? Then the results are computed and a cross section map of apparent resistivity drawn.Since the small abandoned gobs in this mining district had little water, the cross section map of apparent resistivity should be one that exhibits an obvious high resistivity. In this map, if the rate of change is uniform and steady, it reflects the nature state of the rock strata; But if there are local abnormal changes or inconsistent changes, especially where random changes occur, it represents the existence of gobs. Because voids and fractures resulting from mining-induced stresses interrupt the intrinsic regular rhythm of coal measures strata and increase the resistivity.Figures 2 and 3 are the cross-section apparent resistivity contour maps for Line I and II, respectively. Please note the unit of the vertical and horizontal axes is meter while the intensity of shade denotes resistivity intensity with darker being higher.Figure 2 Apparent resistivity along Survey Line I, 8905 entry, Nan Zhuang Coal Group Figure 3 Apparent resistivity along Survey Line II, 8905 entry, Nan Zhuang Coal GroupIn Figure 1 the area between 25-70 m horizontally and 110-130 m vertically (or deep) and in Figure 2 that between 80-100 m horizontally and 30-50 m vertically (or deep) show obvious abnormal changes in apparent resistivity. They are darker indicating higher resistivity. This is in conflict with the intrinsic regular rhythm of physical property for the coal measures strata in their nature state. They were the results of abandoned gobs!Based on the survey results, mine management drilled in-seam horizontal holes from the entry rib at 50 m location on Line I. When it reached 120.4 m from the rib, coal was soft without resistance and drilling water was completely lost. In addition, methane came out with smell of rotten-eggs. Accordingly it was determined this was the gob of a small abandoned coal mine, approximately 15 m wide. Therefore the survey results were validated. Based on the survey results, mine management selected the proper location of mains and set-up entry and the safe mining operations of #15 coal seam were insured.REFERENCES1Fitch, A.A. Development in Geophysical Exploration Methods-5, Applied Science Publishers, London and New York, 1983. 2Yan, S., and M. Chen. Detecting Underground Openings by High Resolution Resistivity Method. Geology Press, Beijing, 1996.3Shi, X., M. Chen et al. Report on Resistivity Exploration of #15 Coal Seam 9th Mining District, Nan Zhuang Coal Group, Yangquan, Xian Province, Xian Branch of CCRI, 2004.中文译文高分辨率大地电阻率法探测废弃煤矿巷道石先新,晏殊,沈明申(中国煤炭科学研究院西安分院)摘 要:在表面荷电勘探中,高分辨率大地电阻率法是勘探废巷十分有效的方法。但是当废弃煤矿的深度高达500英尺(150m)时,该方法的探测能力很大程度的降低,需要采取更多的措施来进行探测。我们在山西省阳泉煤矿使用此种方法进行地下勘探。探测过程使用两条测线,分别设置20m的极间距和10m的极间距,同时在两m处设置检测点。第条线的检测变径为140m,第条线的为60m,而极远处的极点大概离测线12002000m。(注意:、分别位于掘进大巷处)。试验结果表明:测线的废弃工作面在2570m,测线的工作面在80110m。通过试验结果,对入口进行适当的定位,从而对15号煤层提供了安全的采掘环境。关键词:废弃煤巷 高分辨率大地电阻率法 井下电法勘探1引言 山西省阳泉南庄煤炭集团有限公司的15煤层的9号采区的巷道的推进是靠近后沟废弃采空区的。由于关于后沟采空区的条件和采掘程度数据的可靠性较低,这给15号煤层面板布局的最终确定带来了困难。为了给井巷的合理布局、设置安全入口以及主巷道的发展安全提供可靠性地质资料,后沟采空区的情况必须清楚明了。根据我们过去十年获得的经验,如果煤层的厚度小于150m,高分辨率的表面电阻率法则可以得到更加精确的结果。然而,后沟废弃采空区的煤层厚底却达到了350m。考虑到此种情况,我们在地下从掘进大巷入口处使用了高分辨率电阻率法以探测采空区的位置,从而方便15号煤层的挖掘的推进。2大地电阻率的特征 15号煤层是储备矿中主要的煤层。煤层的厚度主要在5.15m6.63m之间,平均厚度为5.89m,贯穿了整个储存区。煤层中主要为高热值的无烟煤,含有少量的中低组分的灰分以及极低的含硫量。采掘完毕后,如果采空区没有被水淹没,它的表面电阻率将会有明显地增加。无论整个采空区是否塌陷,都会呈现出高电阻率材料的特性。正是基于此种物理条件,我们选择使用高分辨率电阻率法对采空区进行探测。3地下高分辨率电阻率法 如上所述,好的煤层质量是决定高分辨率电阻率法能否使用的关键。需要使用何种设备来进行电阻率的勘探是值得更长远的研究的。事实上,采空区是一个人造的、孤立的地质体,并不是一个统一的层状矿床。因此需要利用一些可以叠加采空区的电子信息,定位采空区坐标,并且能够区分其与周围的岩石的特殊设备来探测这种地质体的类型。地下高分辨率电阻率法需要使用三个特殊的电极。单极偶极装置发射的电波更加的密集,提高了观测和控制的水平、增加了叠加的次数、放大信息量,从而提高了采空区探测的分辨率,使得采空区可以区别于周围的岩石群。图1为调查站的阵列图。图1 地下高分辨率电阻率法调查阵列图地下高分辨率电阻率法所采用的参数分别如下:1)供电站中间的距离为A,A=20m;2)调查站之间的距离为C,C=2m;3)极间距为MN,MN=10m;4)测线的半径为:线为140m、线60m;5)无限远处极杆坐标离测线12002000m远。地下调查数据通过防爆型的微伏数字直流电阻率计收集。在地下探测中,每间隔20m设有一座供电站。对于每个供电站,都需要记录两端电压差的不同。每个供电站两端两极间的最大距离为140m(因为偏移的最大距离为140m)。这样就可以实现双层覆盖观测,并且使得勘探区域可以覆盖到140m。采取以下措施以保证采取自地下数据得可靠性:1)为了保证电源良好的接地,在煤层中指定的位置钻水平井;2)青铜极必须插入足够的深度并且到达湿点、夯实坚固,以确保得到的数据稳定和可靠;3)电池需要经常的充电以保证电源电压的稳定,满足使用时的要求。这是获得可靠、准确数据的关键;4)在调查过程中,要经常地检查电源的位置是否准确,获得的数据是否稳定。一旦发现有异常情况,必须重新确认电极的位置,不断的加入额外的电极,重复的测试,直到误差在允许接受的范围内为止。事实上,仪器是稳定且精确的。只要在试验过程中操作合理,就可以大大地降低大地的电阻率。作为结果,信号将变得更强,数据的准确性得到提高。在试验过程中,MN极需要经常的校正。如果有异常情况出现,检测需要重复的进行。这样的试验方法确保了收集的数据的准确性和可信度。4数据分析 高分辨率电阻率法的测定是沿着测线所在的横截面和垂直面同时进行测量的。数据分析分两个步骤进行:首先,检查每个电极电压的不同点。是不是离电极越远电压越低。如果在某处出现突然变化,则需要分析说明此种情况出现的原因。最后,利用所得数据,通过电脑绘制成一个电阻率横断面图。因为小的采空区中一般会出现少量的积水,在电阻率横断面图上会出现一个明显的高电阻率区域。如果图上的斜率的变化是一致且稳定的,那么它就反应了岩层的自然状态;如果图上出现异常的变化或者不一致的变化,特别是变化是随机发生时,则说明了采空区的存在。这是由于采矿时形成的孔洞和裂缝扰乱了煤岩层的内在有规律的节奏,增加了电阻率。图2、3分别是测线和测线的电阻率断面等高线图。请注意:垂直和水平轴的单位是m,图上阴影部分颜色越深则电阻率强度越强。 图2 沿测线电阻率断面等高线图图3 沿测线电阻率断面等高线图图2中,在水平轴2570m,垂直110130m范围内;图3,在水平轴80100m,垂直3050内范围,出现了电阻率明显变化的情况。这些阴影越深说明了电阻率越高。这种现象与自然状态下煤岩层显现的内在规律的物理性质相冲突,从而证明了采空区的存在。基于调查结果,矿山管理部门从掘进大巷入口即测线50m处钻一个相对煤层水平的孔。当钻孔深度离大巷达到120.4m时,煤质变得疏松且电阻率极低可忽略,同时钻井水也完全的消失。此外,井巷中开始出现有臭鸡蛋气味的甲烷气体。发现此处为一个小的废弃煤矿的采空区,宽度大约为15m。因此,试验结果得以验证。基于调查结果,矿山管理部门对矿井进行合理的定位、设置进口,从而使得15号煤层的安全采掘得以进行。参考文献1 Fitch, A.A.地球物理勘探方法发展.伦敦和纽约:应用科学出版社, 19832晏殊,陈明.通过高分辨率电阻率法探测地下采空区.北京:地质出版社,19963石先新,陈明等.15号煤层第九采区电阻率勘探报告:阳泉南庄矿.中国煤炭科学研究院西安分院,2004大采高综采工作面矿压显现规律研究摘要:针对大采高综采工作面采场顶板岩层的运动规律和采场矿山压力显现规律有其特殊性的特点,着重研究大采高综采工作面的矿压显现特征及其规律、工作面采场围岩应力场、位移场及围岩塑性破坏场的分布规律以及大采高综采工作面煤岩组合力学模型及其控制。关键词:大采高综采,矿压显现规律,岩层移动规律,支承压力分布 0 引言目前,在我国一次能量消费结构中,煤炭占75%以上。煤炭不仅是我国的基本燃料,又是重要的工业原料,电力、钢铁、石油加工、水泥、化学原料五大行业都离不开煤炭,因此,煤炭工业的发展直接关系到国计民生。为使我国能源战略持续稳定的发展,必须稳步高效地发展煤炭工业。我国是世界上煤炭资源最丰富的国家之一。据不完全统计,己知含煤面积约55000k了,探明总储量在9000亿t以上,居世界前列。自1989年,我国一直是世界第一大煤炭生产国和消费国,煤炭产量占世界煤炭产量的1/4以上,而缓倾斜厚煤层煤炭产量又占我国总产量的40%以上,我国很多矿区赋存有3.56.0m厚的煤层,这类煤层在邢台、开滦、徐州、充州、淮北、阜新、双鸭山、义马、西山、铜川、阳泉等矿区均为主采煤层。随着市场经济的发展,煤炭工业日趋向大型化、集中化、高产高效方向发展,建设高产高效矿井,提高企业经济效益己成为煤矿企业的基本经营理念,尤其是市场经济的激励机制极大地促进了采煤技术与装备水平的快速发展。我国在引进国外大采高装备技术后,综采工作面日产量可达万t,取得了举世瞩目的成绩。据目前国内外开采技术的发展,大采高综采是指采高在3.56.0m,工作面使用大功率双滚筒采煤机和重型刮板运输机割、运煤,用大吨位液压支架(支架工作阻力、单架支护面积和支架支撑高度大)控制顶板,一次采全高的综采技术。其设备趋于大型化、重型化和自动化,其特点是技术先进、性能可靠、装机功率大、生产效率高。对于煤层倾角小于30的厚煤层(3.56.0m)开采,大采高综采与综采采煤法相比,具有下列优点:煤炭资源回采率高;煤炭含研率低;回采工作面煤尘、煤的自然发火和瓦斯涌出安全性好;对于34m不适宜综采开采的厚煤层,大采高具有工效高、成本低等优点。大采高综采与分层开采相比,具有下列优点:工作面生产能力大,有利于合理集中生产;回采工效和煤炭资源回收率高、巷道掘进率和维护量低;回采工艺和巷道布置简化,综采设备搬家次数少,搬家费用省,增加生产时间;节省材料(人工假顶材料等)和回采成本低等。高产高效大采高综采生产能力大、回采率高、安全条件和经济效益好,是目前国内外厚煤层(3.56.0m)开采技术的主要发展方向之一,其优势使得在国内外被广泛采用。但是,经过矿山实践和许多专家、学者多年的现场观测及理论研究发现,大采高综采与一般综采(采高6002350455560700345058572090045006508001000康家滩矿88101工作面来压时的最大平均载荷为7591kN/架,其支护强度为1012 kN/m2,相当于W级来压极强烈顶板所需支护强度,但实际上由直方图可知,该工作面并无冲击载荷,而且动载系数均小于1.4,说明该类顶板来压并不强烈,但如果按照II级或III级顶板估算其支护强度,仅650 kN/m2或800 kN/m2,显然比实际所需最大平均支护强度1012 kN/m2低36%和21%,即按照表中II , III级顶板设计,其支护安全可靠性大大降低,说明88101大采高综采面的支架承受的载荷比普通综采高。寺河矿23101工作面来压时的最大平均载荷为8228 kN/架,其支护强度为930 kN/m2,相当于III ,W级来压强烈顶板所需支护强度,但实际上由直方图可知,如果除去初撑力过低和过高的因素外,其顶板真是的直方图应为正态分布,动载系数为1. 52,该工作面为II-m级来压明显的顶板。但如果按照II级或III级顶板估算其支护强度,仅650 kN/mz或800 kN/m2,显然比实际所需最大平均支护强度930 kN/mz低30%和14%,即按照表中II , III级顶板设计,其支护安全可靠性大大降低,说明23101大采高综采面的支架承受的载荷比普通综采高。造成上述情形的原因是随着采高的增加,直接顶垮落的岩石不能充满采空区,基本顶岩层层位必然上升,即对支架有影响的岩层移动的层位增高,虽然采场内无冲击载荷,但其静载较大,890kN/m2, 1012 kN/m2, 930kN/m2,分别相当于各大采高综采工作面约8倍采高的岩重。其次,由于采高的增加,回采后顶板的变形位移也要增大,原来认为是基本顶的岩层,部分因变形增大而变成可随支架及时垮落的直接顶,而且基本顶也会随着上移,由此也造成需控制的岩层层位升高。2.大采高综采工作面顶板控制的力学模型根据上述矿压显现规律分析,对于大采高综采工作面我们建立一个以静载计算为主的力学模型,参见图4.3。图4.3 大采高综采面煤岩组合力学模型 图中L为控顶距, 为需控制岩层总厚度,为所控制岩层平均破断角。故支架载荷P为需控制岩层的重力Q1与控制岩层的悬顶重力Q2之和,即: 式中B为支架支护宽度。4.2大采高综采工作面煤岩组合力学模型计算实例1.沙曲矿24101工作面支架工作阻力的确定沙曲矿24101工作面顶板为砂岩,砂岩基本顶岩层的破断角一般取600,因基本顶上位岩层及直接顶也均为一砂岩,为计算方便,取整个要垮落的岩层破断角为60,依据工作面综合柱状图可知,需控制的岩层为3.7m厚的中砂岩、3.8m厚的粗砂岩及其上部5.65m的中砂岩,总计要控制的岩层厚度为14m,约3.5倍采高。将 代入得:即支架所需支护强度为930kN/mz。显然可以满足实际工作面顶板所需的支护强度890kN/mz,由此可知沙曲矿24101工作面实际所选支架额定工作阻力偏低,这与现场观测的工作面支架阻力偏低相对应。2.康家滩矿88101工作面支架工作阻力的确定将 代入得:砂岩基本顶岩层的破断角一般取600,康家滩矿88010工作面因有部分基本顶岩层可视为直接顶,为计算方便,取整个要垮落的岩层破断角为600,依据工作面综合柱状图可知,需控制的岩层为14.88m厚的粗砂岩及其上部3.17m的泥岩,总计要控制的岩层厚度约为19m,约4倍采高。即P=1845kN/m2。显然满足实际工作面所需的支架支护强度1012kN/m。所选支架工作阻力8638kN/架是可靠的。3.寺河矿23101工作面支架工作阻力的确定23101工作面直接顶为砂质泥岩,厚达8.33m(包括伪顶和煤顶在内),基本顶为细砂岩,根据相似模拟试验,其顶板破断角为700,依据工作面综合柱状图可知;需控制的岩层为2m厚的伪顶、6.33m厚砂质泥岩岩、4.26m厚的细砂岩及其上部6.42m厚的泥岩,总计要控制的岩层厚度为19m,约4倍采高。即P=841kN/m2。若考虑I、II级顶板的富余系数1.11.2,则P=921009kN/m2,显然满足实际工作面所需的支架支护强度930kN/m2。所选支架工作阻力8638kN/架是可靠的。将 代入得:由上计算可知:对于缓倾斜厚煤层,采用大采高综采回采工艺,采场支架受力以静载为主,对于现行基本顶板分类条件来说,按约4倍采高控制岩层,加上采空区的悬顶重力,以静载计算支架所需的工作阻力是可以满足大采高工作面顶板控制要求的,这与现场观测与数值模拟计算的结果是相吻合的。结论利用现场观测、理论分析及数值模拟等研究手段,针对大采高综采工作面采场顶板岩层的运动规律和采场压力显现规律有其特殊性的特点,着重研究了大采高综采工作面的矿压显现特征及其规律、和大采高综采工作面煤岩组合力学模型及其控制。这些研究为大采高综采技术在我国煤炭行业的推广应用和发展提供有益的实践经验,同时丰富了大采高综采采场矿压控制理论。本论文研究的主要结论分述如下:1.大采高综采是指采高在3.56.0m,工作面使用大功率双滚筒采煤机和重型刮板运输机割、运煤,用大吨位液压支架(支架工作阻力、单架支护面积和支架支撑高度大)控制顶板,一次采全高的综采技术,其设备趋于大型化、重型化和自动化。其特点是技术先进、性能可靠、装机功率大、生产效率高,使得在国内外被广泛采用。2.根据现场观测及收集的数据和资料,通过研究工作面岩性、直接顶和基本顶初次垮落步距、来压动载系数、支架工作阻力频率分布直方图以及P-L变化曲线等,对沙曲矿24101、康家滩88101和寺河矿23101大采高综采工作面进行了顶板分类研究,结果表明三者分属II III级、II III级、III级基本顶之间的顶板。3.针对不同的缓斜厚煤层开采条件,得出大采高综采工作面矿压显现特征如下:a.采场支架载荷大,较普通综采面高1030%。这是由于大采高工作面支架需控制的顶板岩层层位高。b.来压时动载系数小,且无冲击载荷。这是由于大采高工作面直接顶垮落
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。