



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3几何概型教案(2)教学目标:()能运用模拟的方法估计概率,掌握模拟估计面积的思想;()增强几何概型在解决实际问题中的应用意识教学重点、难点:将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题教学过程:一、课前热身【复习回顾】1.几何概型的特点:、有一个可度量的几何图形s;、试验e看成在s中随机地投掷一点;、事件a就是所投掷的点落在s中的可度量图形a中2.几何概型的概率公式. 3.古典概型与几何概型的区别.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个. 4.几何概型问题的概率的求解. (1)某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可能的,求乘客等车不超过3分钟的概率。(2)如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率。 (3)某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会. 如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份)。甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少? 二、数学运用例1 在等腰直角三角形中,在斜边上任取一点,求小于的概率(测度为长度)【分析】点随机地落在线段上,故线段为区域当点位于图中线段内时,故线段即为区域【解】在上截取于是。答:小于的概率为例2、抛阶砖游戏 “抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的直径为 r)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为a的正方形)的范围内(不与阶砖相连的线重叠),便可获奖.问:参加者获奖的概率有多大? 解:设阶砖每边长度为a ,“金币”直径为r 。若“金币”成功地落在阶砖上,其圆心必位于右图的绿色区域a内。问题化为:向平面区域s (面积为a2)随机投点( “金币” 中心),求该点落在区域a内的概率。于是成功抛中阶砖的概率(0ra)由此可见,当r接近a, p接近于0; 而当r接近0, p接近于1. 例 3.甲、乙二人约定在 12 点到 17点之间在某地会面,先到者等一个小时后即离去设二人在这段时间内的各时刻到达是等可能的,且二人互不影响求二人能会面的概率.解:以x , y别表示甲乙二人到达的时刻,于是即点m 落在图中的阴影部分所有的点构成一个正方形,即有无穷多个结果。由于每人在任一时刻到达都是等可能的,所以落在正方形内各点是等可能的。二人会面的条件是:【变式题】假设你家订了一份报纸,送报人可能在早上6:307:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:008:00之间,问你父亲在离开家前能得到报纸(称为事件a)的概率是多少?解: 以横坐标x表示报纸送到时间,以纵坐标y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件。根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件a发生,所以例4.在一个圆上任取三点a、b、c, 求能构成锐角三角形的概率.解:在一个圆上任取三点a、b、c,构成的三角形内角分别为a、 b、 c. 设ax, by,则它们构成本试验的样本空间 s。构成锐角三角形的(x,y)应满足的条件是: 由几何概率计算得所求概率为三、课堂练习1、在线段 ad 上任意取两个点 b、c,在 b、c 处折断此线段 而得三折线,求此三折线能构成三角形的概率.2、在一张方格纸上随机投一个直径 1 的硬币,问方格多小才能使硬币与线相交的概率大于 0.99 ?3、bertrand 问题:已知半径为 1 的圆的内接等边三角形边长是,在圆内随机取一条弦,求弦长超过的概率.4、一个服务窗口每次只能接待一名顾客,两名顾客将在 8 小时内随机到达.顾客甲需要 1 小时服务时间,顾客乙需要 2 小时.计算有人需要等待的概率.四、回顾小结:1.几何概型的特点:、有一个可度量的几何图形s;、试验e看成在s中随机地投掷一点;、事件a就是所投掷的点落在s中的可度量图形a中 2.古典概型与几何概型的区别.相同:两者基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度黑龙江省气象部门高校毕业生招聘4人(第三批次气象类)考前自测高频考点模拟试题附答案详解(完整版)
- 2025北京华商电力产业发展有限公司2025年搞笑毕业生招聘29人(第三批)考前自测高频考点模拟试题及答案详解(易错题)
- 2025年上海市第一人民医院酒泉医院自主招聘专业技术人员30人考前自测高频考点模拟试题带答案详解
- 2025江西吉安市直三家公立医院编外招聘33人模拟试卷及答案详解(全优)
- 2025年氨纶锦纶包覆丝项目合作计划书
- 2025黑龙江绥化望奎县事业单位招聘71人模拟试卷及1套完整答案详解
- 2025湖南湘江爱乐乐团招聘考前自测高频考点模拟试题及答案详解(夺冠)
- 2025贵州茅台酒股份有限公司高层次人才(博士研究生)引进14人模拟试卷及一套答案详解
- 2025春季河南新乡工商职业学院招聘考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年临沂市工业学校公开招聘教师(40名)模拟试卷带答案详解
- 2025年10月“江南十校”2026届新高三第一次综合素质检测 语文试卷(含答案详解)
- 2025广东普通专升本《政治理论》试题与答案
- 明市2025新闻记者职业资格考试(新闻采编实务)复习题及答案
- 人工牛黄甲硝唑胶囊课件
- 全产业链视角下我国低空经济保险发展研究
- 核心素养下初中数学符号意识的培养
- 淮北矿业安全管理办法
- 诊所日常运营管理规范流程
- 法国文学课件
- 2025年止血技术理论知识考试试题及答案
- ECMO护理进修汇报
评论
0/150
提交评论