高中数学 集合中的题型归类解析新人教版.doc_第1页
高中数学 集合中的题型归类解析新人教版.doc_第2页
高中数学 集合中的题型归类解析新人教版.doc_第3页
高中数学 集合中的题型归类解析新人教版.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

集合的概念题型归类解析集合问题为每年必考题型之一,特别是近几年高考试卷中出现了一些以集合为背景的试题,这些试题涉及的知识面广,灵活性较强.实际上,这方面问题的本质是以集合为载体,将一些数学问题的已知条件“嵌入”集合之中,只不过是在语言形式方面做了些变通罢了,而解决问题的理论依据、方法等仍类似于其他问题的求解.因此,在集合题型上应引起我们的足够重视.题型1:集合相等问题集合相等问题,主要是利用集合中元素的互异性,集合中元素的互异性是集合的重要属性,在解题中集合中元素的互异性常常被我们忽略,从而导致解题的失败,所以在解题中应引起足够的重视.例1已知集合,若,求的值分析:要解决的求值问题,关键是要有方程的数学思想,此题应根据相等的各个集合的元素完全相同,及集合中元素的确定性、互异性、无序性建立关系式解:根据题意,分两种情况进行讨论:(1)若,消去,得当时,集合中的三个元素均为零,与元素的互异性相矛盾,故,即,此时中的三个元素又相同,此时无解.(2)若消去,得,即又,题型2:证明、判断两集合的关系集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此要予以重视。反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的。因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.例2设集合z,集合z,试判断集合、的关系。分析:先判断元素与集合的关系,再判断集合与集合的关系解:任设,则z,z,z.故.又任设,则z.z,z.故.综上可知.题型3:集合中的参数问题所谓集合中的参数问题,是指集合适合的条件中“适合的条件”里面含有参数的问题,解答这类问题类似于其他含有参数的问题,灵活性极强,难度也很大.因此,解决此为问题要注意思维的严谨性.例3已知集合,满足,则实数的取值范围为 . 解:(1)当时,得,满足.(2)当时,解得.综合(1)、(2)得的取值范围是.题型4:利用韦恩图或数轴求交集、并集、补集有的集合问题比较抽象,解题时若借助韦恩图进行数形分析或利用数轴、图象,采用数形结合思想方法,往往可使问题直观化、形象化,进而能使问题简捷、准确地获解.例4设全集,.21。(1)求及;(2)求及.解:(1)如图,利用数轴可直观地得到结果:;.(2) ,或;.评注:有关用不等式表示的集合的并、交、补运算,常常借助于数学轴的几何直观来帮助思考.题型5:开放、定义型问题近几年在高考试题的帮助带动下,一大批以集合为背景的开放型试题不断出现.在用描述法表示的集合中,集合的形式被表示为所适合的条件,其中的代表元素“的任意性”和“所适合的条件的灵活性”决定了这类题目具有涉及的知识面广、灵活性强等特点.例5设,定义与的差集为,且,则解:由所给的新定义:差集,且,得,从而.评注:差集中的“差”与我们平时所接触的“差”的意义是不同的.我们可能会犯这样的错误:.例6已知z,z,问是否存在实数,使得(1),(2)同时成立.分析:假设存在使得(1)成立,得到与的关系后与联立,然后讨论联立的不等式组.解:假设存在实数,使得,同时成立,则集合z与集合z分别对应集合z与z,与对应的直线与抛物线至少有一个公共点,所以方程组有解,即方程必有解.因此,又 由相加,得,即.将代入得,再将代入得,因此,将,代入方程得,解得z.所以不存在实数,使得(1),(2)同时成立.评注:对于存在性探索性问题,首先要假设这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论